mirror of
https://github.com/dashpay/dash.git
synced 2024-12-30 22:35:51 +01:00
297 lines
8.8 KiB
C++
297 lines
8.8 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2016 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_ARITH_UINT256_H
|
|
#define BITCOIN_ARITH_UINT256_H
|
|
|
|
#include <assert.h>
|
|
#include <cstring>
|
|
#include <stdexcept>
|
|
#include <stdint.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
class uint256;
|
|
|
|
class uint_error : public std::runtime_error {
|
|
public:
|
|
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
|
|
};
|
|
|
|
/** Template base class for unsigned big integers. */
|
|
template<unsigned int BITS>
|
|
class base_uint
|
|
{
|
|
protected:
|
|
enum { WIDTH=BITS/32 };
|
|
uint32_t pn[WIDTH];
|
|
public:
|
|
|
|
base_uint()
|
|
{
|
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
|
|
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] = 0;
|
|
}
|
|
|
|
base_uint(const base_uint& b)
|
|
{
|
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
|
|
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] = b.pn[i];
|
|
}
|
|
|
|
base_uint& operator=(const base_uint& b)
|
|
{
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] = b.pn[i];
|
|
return *this;
|
|
}
|
|
|
|
base_uint(uint64_t b)
|
|
{
|
|
static_assert(BITS/32 > 0 && BITS%32 == 0, "Template parameter BITS must be a positive multiple of 32.");
|
|
|
|
pn[0] = (unsigned int)b;
|
|
pn[1] = (unsigned int)(b >> 32);
|
|
for (int i = 2; i < WIDTH; i++)
|
|
pn[i] = 0;
|
|
}
|
|
|
|
explicit base_uint(const std::string& str);
|
|
|
|
bool operator!() const
|
|
{
|
|
for (int i = 0; i < WIDTH; i++)
|
|
if (pn[i] != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
const base_uint operator~() const
|
|
{
|
|
base_uint ret;
|
|
for (int i = 0; i < WIDTH; i++)
|
|
ret.pn[i] = ~pn[i];
|
|
return ret;
|
|
}
|
|
|
|
const base_uint operator-() const
|
|
{
|
|
base_uint ret;
|
|
for (int i = 0; i < WIDTH; i++)
|
|
ret.pn[i] = ~pn[i];
|
|
ret++;
|
|
return ret;
|
|
}
|
|
|
|
double getdouble() const;
|
|
|
|
base_uint& operator=(uint64_t b)
|
|
{
|
|
pn[0] = (unsigned int)b;
|
|
pn[1] = (unsigned int)(b >> 32);
|
|
for (int i = 2; i < WIDTH; i++)
|
|
pn[i] = 0;
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator^=(const base_uint& b)
|
|
{
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] ^= b.pn[i];
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator&=(const base_uint& b)
|
|
{
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] &= b.pn[i];
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator|=(const base_uint& b)
|
|
{
|
|
for (int i = 0; i < WIDTH; i++)
|
|
pn[i] |= b.pn[i];
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator^=(uint64_t b)
|
|
{
|
|
pn[0] ^= (unsigned int)b;
|
|
pn[1] ^= (unsigned int)(b >> 32);
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator|=(uint64_t b)
|
|
{
|
|
pn[0] |= (unsigned int)b;
|
|
pn[1] |= (unsigned int)(b >> 32);
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator<<=(unsigned int shift);
|
|
base_uint& operator>>=(unsigned int shift);
|
|
|
|
base_uint& operator+=(const base_uint& b)
|
|
{
|
|
uint64_t carry = 0;
|
|
for (int i = 0; i < WIDTH; i++)
|
|
{
|
|
uint64_t n = carry + pn[i] + b.pn[i];
|
|
pn[i] = n & 0xffffffff;
|
|
carry = n >> 32;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator-=(const base_uint& b)
|
|
{
|
|
*this += -b;
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator+=(uint64_t b64)
|
|
{
|
|
base_uint b;
|
|
b = b64;
|
|
*this += b;
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator-=(uint64_t b64)
|
|
{
|
|
base_uint b;
|
|
b = b64;
|
|
*this += -b;
|
|
return *this;
|
|
}
|
|
|
|
base_uint& operator*=(uint32_t b32);
|
|
base_uint& operator*=(const base_uint& b);
|
|
base_uint& operator/=(const base_uint& b);
|
|
|
|
base_uint& operator++()
|
|
{
|
|
// prefix operator
|
|
int i = 0;
|
|
while (i < WIDTH && ++pn[i] == 0)
|
|
i++;
|
|
return *this;
|
|
}
|
|
|
|
const base_uint operator++(int)
|
|
{
|
|
// postfix operator
|
|
const base_uint ret = *this;
|
|
++(*this);
|
|
return ret;
|
|
}
|
|
|
|
base_uint& operator--()
|
|
{
|
|
// prefix operator
|
|
int i = 0;
|
|
while (i < WIDTH && --pn[i] == (uint32_t)-1)
|
|
i++;
|
|
return *this;
|
|
}
|
|
|
|
const base_uint operator--(int)
|
|
{
|
|
// postfix operator
|
|
const base_uint ret = *this;
|
|
--(*this);
|
|
return ret;
|
|
}
|
|
|
|
int CompareTo(const base_uint& b) const;
|
|
bool EqualTo(uint64_t b) const;
|
|
|
|
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
|
|
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
|
|
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
|
|
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
|
|
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
|
|
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
|
|
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
|
|
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
|
|
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
|
|
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
|
|
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
|
|
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
|
|
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
|
|
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
|
|
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
|
|
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
|
|
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
|
|
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
|
|
|
|
std::string GetHex() const;
|
|
void SetHex(const char* psz);
|
|
void SetHex(const std::string& str);
|
|
std::string ToString() const;
|
|
|
|
unsigned int size() const
|
|
{
|
|
return sizeof(pn);
|
|
}
|
|
|
|
/**
|
|
* Returns the position of the highest bit set plus one, or zero if the
|
|
* value is zero.
|
|
*/
|
|
unsigned int bits() const;
|
|
|
|
uint64_t GetLow64() const
|
|
{
|
|
static_assert(WIDTH >= 2, "Assertion WIDTH >= 2 failed (WIDTH = BITS / 32). BITS is a template parameter.");
|
|
return pn[0] | (uint64_t)pn[1] << 32;
|
|
}
|
|
};
|
|
|
|
/** 256-bit unsigned big integer. */
|
|
class arith_uint256 : public base_uint<256> {
|
|
public:
|
|
arith_uint256() {}
|
|
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
|
|
arith_uint256(uint64_t b) : base_uint<256>(b) {}
|
|
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
|
|
|
|
/**
|
|
* The "compact" format is a representation of a whole
|
|
* number N using an unsigned 32bit number similar to a
|
|
* floating point format.
|
|
* The most significant 8 bits are the unsigned exponent of base 256.
|
|
* This exponent can be thought of as "number of bytes of N".
|
|
* The lower 23 bits are the mantissa.
|
|
* Bit number 24 (0x800000) represents the sign of N.
|
|
* N = (-1^sign) * mantissa * 256^(exponent-3)
|
|
*
|
|
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
|
|
* MPI uses the most significant bit of the first byte as sign.
|
|
* Thus 0x1234560000 is compact (0x05123456)
|
|
* and 0xc0de000000 is compact (0x0600c0de)
|
|
*
|
|
* Bitcoin only uses this "compact" format for encoding difficulty
|
|
* targets, which are unsigned 256bit quantities. Thus, all the
|
|
* complexities of the sign bit and using base 256 are probably an
|
|
* implementation accident.
|
|
*/
|
|
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = nullptr, bool *pfOverflow = nullptr);
|
|
uint32_t GetCompact(bool fNegative = false) const;
|
|
|
|
friend uint256 ArithToUint256(const arith_uint256 &);
|
|
friend arith_uint256 UintToArith256(const uint256 &);
|
|
};
|
|
|
|
uint256 ArithToUint256(const arith_uint256 &);
|
|
arith_uint256 UintToArith256(const uint256 &);
|
|
|
|
#endif // BITCOIN_ARITH_UINT256_H
|