mirror of
https://github.com/dashpay/dash.git
synced 2024-12-27 21:12:48 +01:00
99f09a0be6
5d4597666d589e39354e0d8dd5b2afbe1a5d7d8e Rewrite OutputGroups to be clearer and to use scriptPubKeys (Andrew Chow)
f6b305273910db0e46798d361413a7e878cb45f7 Explicitly filter out partial groups when we don't want them (Andrew Chow)
416d74fb1687ae1d47a58c153d09d9afe0b6dc60 Move OutputGroup positive only filtering into Insert (Andrew Chow)
d895e98b594b873f3d34c8ba63e9b55125d51b5a Move EligibleForSpending into GroupOutputs (Andrew Chow)
99b399aba5d27476b61b4865cc39553d03965d57 Move fee setting of OutputGroup to Insert (Andrew Chow)
6148a8acda5e594bb9b3b2d989056f9e03ddbdbd Move GroupOutputs into SelectCoinsMinConf (Andrew Chow)
2acad036575ec998f8bbe4f10f6206b1c8ad3d23 Remove OutputGroup non-default constructors (Andrew Chow)
Pull request description:
Even after #17458, we still deal with setting fees of an `OutputGroup` and filtering the `OutputGroup` outside of the struct. We currently make all of the `OutputGroup`s in `SelectCoins` and then copy and modify them within each `SelectCoinsMinConf` scenario. This PR changes this to constructing the `OutputGroup`s within the `SelectCoinsMinConf` so that the scenario can be taken into account during the group construction. Furthermore, setting of fees and filtering for effective value is moved into `OutputGroup::Insert` itself so that we don't add undesirable outputs to an `OutputGroup` rather than deleting them afterwards.
To facilitate fee calculation and effective value filtering during `OutputGroup::Insert`, `OutputGroup` now takes the feerates in its constructor and computes the fees and effective value for each output during `Insert`.
While removing `OutputGroup`s in accordance with the `CoinEligibilityFilter` still requires creating the `OutputGroup`s first, we can do that within the function that makes them - `GroupOutput`s.
ACKs for top commit:
Xekyo:
Code review ACK: 5d4597666d
fjahr:
Code review ACK 5d4597666d589e39354e0d8dd5b2afbe1a5d7d8e
meshcollider:
Light utACK 5d4597666d589e39354e0d8dd5b2afbe1a5d7d8e
Tree-SHA512: 35965b6d49a87f4ebb366ec4f00aafaaf78e9282481ae2c9682b515a3a9f2cbcd3cd6e202fee29489d48fe7f3a7cede4270796f5e72bbaff76da647138fb3059
403 lines
18 KiB
C++
403 lines
18 KiB
C++
// Copyright (c) 2017-2020 The Bitcoin Core developers
|
||
// Distributed under the MIT software license, see the accompanying
|
||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||
|
||
#include <wallet/coinselection.h>
|
||
|
||
#include <policy/feerate.h>
|
||
#include <util/system.h>
|
||
#include <util/moneystr.h>
|
||
|
||
#include <coinjoin/common.h>
|
||
|
||
#include <optional>
|
||
|
||
// Descending order comparator
|
||
struct {
|
||
bool operator()(const OutputGroup& a, const OutputGroup& b) const
|
||
{
|
||
return a.effective_value > b.effective_value;
|
||
}
|
||
} descending;
|
||
|
||
/*
|
||
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
|
||
* set that can pay for the spending target and does not exceed the spending target by more than the
|
||
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
|
||
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
|
||
* are sorted by their effective values and the tree is explored deterministically per the inclusion
|
||
* branch first. At each node, the algorithm checks whether the selection is within the target range.
|
||
* While the selection has not reached the target range, more UTXOs are included. When a selection's
|
||
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
|
||
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
|
||
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
|
||
*
|
||
* The search continues to search for better solutions after one solution has been found. The best
|
||
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
|
||
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
|
||
* inputs, plus the amount by which the selection exceeds the spending target:
|
||
*
|
||
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
|
||
*
|
||
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
|
||
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
|
||
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
|
||
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
|
||
* predecessor.
|
||
*
|
||
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
|
||
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
|
||
*
|
||
* @param const std::vector<CInputCoin>& utxo_pool The set of UTXOs that we are choosing from.
|
||
* These UTXOs will be sorted in descending order by effective value and the CInputCoins'
|
||
* values are their effective values.
|
||
* @param const CAmount& target_value This is the value that we want to select. It is the lower
|
||
* bound of the range.
|
||
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
|
||
* This plus target_value is the upper bound of the range.
|
||
* @param std::set<CInputCoin>& out_set -> This is an output parameter for the set of CInputCoins
|
||
* that have been selected.
|
||
* @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins
|
||
* that were selected.
|
||
* @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size
|
||
* overhead (version, locktime, marker and flag)
|
||
*/
|
||
|
||
static const size_t TOTAL_TRIES = 100000;
|
||
|
||
bool SelectCoinsBnB(std::vector<OutputGroup>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees)
|
||
{
|
||
out_set.clear();
|
||
CAmount curr_value = 0;
|
||
|
||
std::vector<bool> curr_selection; // select the utxo at this index
|
||
curr_selection.reserve(utxo_pool.size());
|
||
CAmount actual_target = not_input_fees + target_value;
|
||
|
||
// Calculate curr_available_value
|
||
CAmount curr_available_value = 0;
|
||
for (const OutputGroup& utxo : utxo_pool) {
|
||
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
|
||
assert(utxo.effective_value > 0);
|
||
curr_available_value += utxo.effective_value;
|
||
}
|
||
if (curr_available_value < actual_target) {
|
||
return false;
|
||
}
|
||
|
||
// Sort the utxo_pool
|
||
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
|
||
|
||
CAmount curr_waste = 0;
|
||
std::vector<bool> best_selection;
|
||
CAmount best_waste = MAX_MONEY;
|
||
|
||
// Depth First search loop for choosing the UTXOs
|
||
for (size_t i = 0; i < TOTAL_TRIES; ++i) {
|
||
// Conditions for starting a backtrack
|
||
bool backtrack = false;
|
||
if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
|
||
curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch
|
||
(curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing
|
||
backtrack = true;
|
||
} else if (curr_value >= actual_target) { // Selected value is within range
|
||
curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison
|
||
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
|
||
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
|
||
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
|
||
// explore any more UTXOs to avoid burning money like that.
|
||
if (curr_waste <= best_waste) {
|
||
best_selection = curr_selection;
|
||
best_selection.resize(utxo_pool.size());
|
||
best_waste = curr_waste;
|
||
if (best_waste == 0) {
|
||
break;
|
||
}
|
||
}
|
||
curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now
|
||
backtrack = true;
|
||
}
|
||
|
||
// Backtracking, moving backwards
|
||
if (backtrack) {
|
||
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
|
||
while (!curr_selection.empty() && !curr_selection.back()) {
|
||
curr_selection.pop_back();
|
||
curr_available_value += utxo_pool.at(curr_selection.size()).effective_value;
|
||
}
|
||
|
||
if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
|
||
break;
|
||
}
|
||
|
||
// Output was included on previous iterations, try excluding now.
|
||
curr_selection.back() = false;
|
||
OutputGroup& utxo = utxo_pool.at(curr_selection.size() - 1);
|
||
curr_value -= utxo.effective_value;
|
||
curr_waste -= utxo.fee - utxo.long_term_fee;
|
||
} else { // Moving forwards, continuing down this branch
|
||
OutputGroup& utxo = utxo_pool.at(curr_selection.size());
|
||
|
||
// Remove this utxo from the curr_available_value utxo amount
|
||
curr_available_value -= utxo.effective_value;
|
||
|
||
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
|
||
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
|
||
if (!curr_selection.empty() && !curr_selection.back() &&
|
||
utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value &&
|
||
utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) {
|
||
curr_selection.push_back(false);
|
||
} else {
|
||
// Inclusion branch first (Largest First Exploration)
|
||
curr_selection.push_back(true);
|
||
curr_value += utxo.effective_value;
|
||
curr_waste += utxo.fee - utxo.long_term_fee;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Check for solution
|
||
if (best_selection.empty()) {
|
||
return false;
|
||
}
|
||
|
||
// Set output set
|
||
value_ret = 0;
|
||
for (size_t i = 0; i < best_selection.size(); ++i) {
|
||
if (best_selection.at(i)) {
|
||
util::insert(out_set, utxo_pool.at(i).m_outputs);
|
||
value_ret += utxo_pool.at(i).m_value;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void ApproximateBestSubset(const std::vector<OutputGroup>& groups, const CAmount& nTotalLower, const CAmount& nTargetValue,
|
||
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
|
||
{
|
||
std::vector<char> vfIncluded;
|
||
|
||
vfBest.assign(groups.size(), true);
|
||
nBest = nTotalLower;
|
||
int nBestInputCount = 0;
|
||
|
||
FastRandomContext insecure_rand;
|
||
|
||
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
|
||
{
|
||
vfIncluded.assign(groups.size(), false);
|
||
CAmount nTotal = 0;
|
||
int nTotalInputCount = 0;
|
||
bool fReachedTarget = false;
|
||
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
|
||
{
|
||
for (unsigned int i = 0; i < groups.size(); i++)
|
||
{
|
||
//The solver here uses a randomized algorithm,
|
||
//the randomness serves no real security purpose but is just
|
||
//needed to prevent degenerate behavior and it is important
|
||
//that the rng is fast. We do not use a constant random sequence,
|
||
//because there may be some privacy improvement by making
|
||
//the selection random.
|
||
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
|
||
{
|
||
nTotal += groups[i].m_value;
|
||
++nTotalInputCount;
|
||
vfIncluded[i] = true;
|
||
if (nTotal >= nTargetValue)
|
||
{
|
||
fReachedTarget = true;
|
||
if (nTotal < nBest || (nTotal == nBest && nTotalInputCount < nBestInputCount))
|
||
{
|
||
nBest = nTotal;
|
||
nBestInputCount = nTotalInputCount;
|
||
vfBest = vfIncluded;
|
||
}
|
||
nTotal -= groups[i].m_value;
|
||
--nTotalInputCount;
|
||
vfIncluded[i] = false;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
struct CompareByPriority
|
||
{
|
||
bool operator()(const OutputGroup& group1,
|
||
const OutputGroup& group2) const
|
||
{
|
||
return CoinJoin::CalculateAmountPriority(group1.m_value) > CoinJoin::CalculateAmountPriority(group2.m_value);
|
||
}
|
||
};
|
||
|
||
// move denoms down
|
||
bool less_then_denom (const OutputGroup& group1, const OutputGroup& group2)
|
||
{
|
||
bool found1 = false;
|
||
bool found2 = false;
|
||
for (const auto& d : CoinJoin::GetStandardDenominations()) // loop through predefined denoms
|
||
{
|
||
if(group1.m_value == d) found1 = true;
|
||
if(group2.m_value == d) found2 = true;
|
||
}
|
||
return (!found1 && found2);
|
||
}
|
||
|
||
bool KnapsackSolver(const CAmount& nTargetValue, std::vector<OutputGroup>& groups, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet, bool fFulyMixedOnly, CAmount maxTxFee)
|
||
{
|
||
setCoinsRet.clear();
|
||
nValueRet = 0;
|
||
|
||
// List of values less than target
|
||
std::optional<OutputGroup> lowest_larger;
|
||
std::vector<OutputGroup> applicable_groups;
|
||
CAmount nTotalLower = 0;
|
||
|
||
Shuffle(groups.begin(), groups.end(), FastRandomContext());
|
||
|
||
int tryDenomStart = 0;
|
||
CAmount nMinChange = MIN_CHANGE;
|
||
|
||
if (fFulyMixedOnly) {
|
||
// larger denoms first
|
||
std::sort(groups.rbegin(), groups.rend(), CompareByPriority());
|
||
// we actually want denoms only, so let's skip "non-denom only" step
|
||
tryDenomStart = 1;
|
||
// no change is allowed
|
||
nMinChange = 0;
|
||
} else {
|
||
// move denoms down on the list
|
||
// try not to use denominated coins when not needed, save denoms for coinjoin
|
||
std::sort(groups.begin(), groups.end(), less_then_denom);
|
||
}
|
||
|
||
// try to find nondenom first to prevent unneeded spending of mixed coins
|
||
for (unsigned int tryDenom = tryDenomStart; tryDenom < 2; tryDenom++) {
|
||
LogPrint(BCLog::SELECTCOINS, "tryDenom: %d\n", tryDenom);
|
||
applicable_groups.clear();
|
||
nTotalLower = 0;
|
||
for (const OutputGroup& group : groups) {
|
||
if (tryDenom == 0 && CoinJoin::IsDenominatedAmount(group.m_value)) {
|
||
continue; // we don't want denom values on first run
|
||
}
|
||
if (group.m_value == nTargetValue) {
|
||
util::insert(setCoinsRet, group.m_outputs);
|
||
nValueRet += group.m_value;
|
||
return true;
|
||
} else if (group.m_value < nTargetValue + nMinChange) {
|
||
applicable_groups.push_back(group);
|
||
nTotalLower += group.m_value;
|
||
} else if (!lowest_larger || group.m_value < lowest_larger->m_value) {
|
||
lowest_larger = group;
|
||
}
|
||
}
|
||
|
||
if (nTotalLower == nTargetValue) {
|
||
for (const auto& group : applicable_groups) {
|
||
util::insert(setCoinsRet, group.m_outputs);
|
||
nValueRet += group.m_value;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
if (nTotalLower < nTargetValue) {
|
||
if (!lowest_larger) { // there is no input larger than nTargetValue
|
||
if (tryDenom == 0)
|
||
// we didn't look at denom yet, let's do it
|
||
continue;
|
||
else
|
||
// we looked at everything possible and didn't find anything, no luck
|
||
return false;
|
||
}
|
||
util::insert(setCoinsRet, lowest_larger->m_outputs);
|
||
nValueRet += lowest_larger->m_value;
|
||
// There is no change in PS, so we know the fee beforehand,
|
||
// can see if we exceeded the max fee and thus fail quickly.
|
||
return fFulyMixedOnly ? (nValueRet - nTargetValue <= maxTxFee) : true;
|
||
}
|
||
|
||
// nTotalLower > nTargetValue
|
||
break;
|
||
}
|
||
|
||
// Solve subset sum by stochastic approximation
|
||
std::sort(applicable_groups.begin(), applicable_groups.end(), descending);
|
||
std::vector<char> vfBest;
|
||
CAmount nBest;
|
||
|
||
ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue, vfBest, nBest);
|
||
if (nBest != nTargetValue && nMinChange != 0 && nTotalLower >= nTargetValue + nMinChange) {
|
||
ApproximateBestSubset(applicable_groups, nTotalLower, nTargetValue + nMinChange, vfBest, nBest);
|
||
}
|
||
|
||
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
|
||
// or the next bigger coin is closer), return the bigger coin
|
||
if (lowest_larger &&
|
||
((nBest != nTargetValue && nBest < nTargetValue + nMinChange) || lowest_larger->m_value <= nBest)) {
|
||
util::insert(setCoinsRet, lowest_larger->m_outputs);
|
||
nValueRet += lowest_larger->m_value;
|
||
} else {
|
||
std::string s = "CWallet::SelectCoinsMinConf best subset: ";
|
||
for (unsigned int i = 0; i < applicable_groups.size(); i++) {
|
||
if (vfBest[i]) {
|
||
util::insert(setCoinsRet, applicable_groups[i].m_outputs);
|
||
nValueRet += applicable_groups[i].m_value;
|
||
s += FormatMoney(applicable_groups[i].m_value) + " ";
|
||
}
|
||
}
|
||
LogPrint(BCLog::SELECTCOINS, "%s - total %s\n", s, FormatMoney(nBest));
|
||
}
|
||
|
||
// There is no change in PS, so we know the fee beforehand,
|
||
// can see if we exceeded the max fee and thus fail quickly.
|
||
return fFulyMixedOnly ? (nValueRet - nTargetValue <= maxTxFee) : true;
|
||
}
|
||
|
||
/******************************************************************************
|
||
|
||
OutputGroup
|
||
|
||
******************************************************************************/
|
||
|
||
void OutputGroup::Insert(const CInputCoin& output, int depth, bool from_me, size_t ancestors, size_t descendants, bool positive_only) {
|
||
// Compute the effective value first
|
||
const CAmount coin_fee = output.m_input_bytes < 0 ? 0 : m_effective_feerate.GetFee(output.m_input_bytes);
|
||
const CAmount ev = output.txout.nValue - coin_fee;
|
||
|
||
// Filter for positive only here before adding the coin
|
||
if (positive_only && ev <= 0) return;
|
||
|
||
m_outputs.push_back(output);
|
||
CInputCoin& coin = m_outputs.back();
|
||
|
||
coin.m_fee = coin_fee;
|
||
fee += coin.m_fee;
|
||
|
||
coin.m_long_term_fee = coin.m_input_bytes < 0 ? 0 : m_long_term_feerate.GetFee(coin.m_input_bytes);
|
||
long_term_fee += coin.m_long_term_fee;
|
||
|
||
coin.effective_value = ev;
|
||
effective_value += coin.effective_value;
|
||
|
||
m_from_me &= from_me;
|
||
m_value += output.txout.nValue;
|
||
m_depth = std::min(m_depth, depth);
|
||
// ancestors here express the number of ancestors the new coin will end up having, which is
|
||
// the sum, rather than the max; this will overestimate in the cases where multiple inputs
|
||
// have common ancestors
|
||
m_ancestors += ancestors;
|
||
// descendants is the count as seen from the top ancestor, not the descendants as seen from the
|
||
// coin itself; thus, this value is counted as the max, not the sum
|
||
m_descendants = std::max(m_descendants, descendants);
|
||
}
|
||
|
||
bool OutputGroup::EligibleForSpending(const CoinEligibilityFilter& eligibility_filter, bool isISLocked) const
|
||
{
|
||
return (m_depth >= (m_from_me ? eligibility_filter.conf_mine : eligibility_filter.conf_theirs) || isISLocked)
|
||
&& m_ancestors <= eligibility_filter.max_ancestors
|
||
&& m_descendants <= eligibility_filter.max_descendants;
|
||
}
|