dash/test/functional/feature_assumevalid.py
fanquake 9d33b30a87
Merge #19674: refactor: test: use throwaway _ variable for unused loop counters
dac7a111bdd3b0233d94cf68dae7a8bfc6ac9c64 refactor: test: use _ variable for unused loop counters (Sebastian Falbesoner)

Pull request description:

  This tiny PR substitutes Python loops in the form of `for x in range(N): ...` by `for _ in range(N): ...` where applicable. The idea is indicating to the reader that a block (or statement, in list comprehensions) is just repeated N times, and that the loop counter is not used in the body, hence using the throwaway variable. This is already done quite often in the current tests (see e.g. `$ git grep "for _ in range("`). Another alternative would be using `itertools.repeat` (according to Python core developer Raymond Hettinger it's [even faster](https://twitter.com/raymondh/status/1144527183341375488)), but that doesn't seem to be widespread in use and I'm not sure about a readability increase.

  The only drawback I see is that whenever one wants to debug loop iterations, one would need to introduce a loop variable again. Reviewing this is basically a no-brainer, since tests would fail immediately if a a substitution has taken place on a loop where the variable is used.

  Instances to replace were found by `$ git grep "for.*in range("` and manually checked.

ACKs for top commit:
  darosior:
    ACK dac7a111bdd3b0233d94cf68dae7a8bfc6ac9c64
  instagibbs:
    manual inspection ACK dac7a111bd
  practicalswift:
    ACK dac7a111bdd3b0233d94cf68dae7a8bfc6ac9c64 -- the updated code is easier to reason about since the throwaway nature of a variable is expressed explicitly (using the Pythonic `_` idiom) instead of implicitly. Explicit is better than implicit was we all know by now :)

Tree-SHA512: 5f43ded9ce14e5e00b3876ec445b90acda1842f813149ae7bafa93f3ac3d510bb778e2c701187fd2c73585e6b87797bb2d2987139bd1a9ba7d58775a59392406
2024-01-20 00:07:09 +07:00

193 lines
7.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2014-2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test logic for skipping signature validation on old blocks.
Test logic for skipping signature validation on blocks which we've assumed
valid (https://github.com/bitcoin/bitcoin/pull/9484)
We build a chain that includes and invalid signature for one of the
transactions:
0: genesis block
1: block 1 with coinbase transaction output.
2-101: bury that block with 100 blocks so the coinbase transaction
output can be spent
102: a block containing a transaction spending the coinbase
transaction output. The transaction has an invalid signature.
103-2202: bury the bad block with just over two weeks' worth of blocks
(2100 blocks)
Start three nodes:
- node0 has no -assumevalid parameter. Try to sync to block 2202. It will
reject block 102 and only sync as far as block 101
- node1 has -assumevalid set to the hash of block 102. Try to sync to
block 2202. node1 will sync all the way to block 2202.
- node2 has -assumevalid set to the hash of block 102. Try to sync to
block 200. node2 will reject block 102 since it's assumed valid, but it
isn't buried by at least two weeks' work.
"""
from test_framework.blocktools import (
COINBASE_MATURITY,
create_block,
create_coinbase,
)
from test_framework.key import ECKey
from test_framework.messages import (
CBlockHeader,
COutPoint,
CTransaction,
CTxIn,
CTxOut,
msg_block,
msg_headers,
)
from test_framework.mininode import P2PInterface
from test_framework.script import (CScript, OP_TRUE)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (assert_equal, set_node_times, wait_until)
class BaseNode(P2PInterface):
def send_header_for_blocks(self, new_blocks):
headers_message = msg_headers()
headers_message.headers = [CBlockHeader(b) for b in new_blocks]
self.send_message(headers_message)
class AssumeValidTest(BitcoinTestFramework):
def set_test_params(self):
self.setup_clean_chain = True
self.num_nodes = 3
self.extra_args = ["-dip3params=9000:9000", "-checkblockindex=0"]
self.rpc_timeout = 120
def setup_network(self):
self.add_nodes(3)
# Start node0. We don't start the other nodes yet since
# we need to pre-mine a block with an invalid transaction
# signature so we can pass in the block hash as assumevalid.
self.start_node(0, extra_args=self.extra_args)
def send_blocks_until_disconnected(self, p2p_conn):
"""Keep sending blocks to the node until we're disconnected."""
for i in range(len(self.blocks)):
if not p2p_conn.is_connected:
break
try:
p2p_conn.send_message(msg_block(self.blocks[i]))
except IOError:
assert not p2p_conn.is_connected
break
def run_test(self):
p2p0 = self.nodes[0].add_p2p_connection(BaseNode())
# Build the blockchain
self.tip = int(self.nodes[0].getbestblockhash(), 16)
self.block_time = self.nodes[0].getblock(self.nodes[0].getbestblockhash())['time'] + 1
self.blocks = []
# Get a pubkey for the coinbase TXO
coinbase_key = ECKey()
coinbase_key.generate()
coinbase_pubkey = coinbase_key.get_pubkey().get_bytes()
# Create the first block with a coinbase output to our key
height = 1
block = create_block(self.tip, create_coinbase(height, coinbase_pubkey), self.block_time)
self.blocks.append(block)
self.block_time += 1
block.solve()
# Save the coinbase for later
self.block1 = block
self.tip = block.sha256
height += 1
# Bury the block 100 deep so the coinbase output is spendable
for _ in range(100):
block = create_block(self.tip, create_coinbase(height), self.block_time)
block.solve()
self.blocks.append(block)
self.tip = block.sha256
self.block_time += 1
height += 1
# Create a transaction spending the coinbase output with an invalid (null) signature
tx = CTransaction()
tx.vin.append(CTxIn(COutPoint(self.block1.vtx[0].sha256, 0), scriptSig=b""))
tx.vout.append(CTxOut(49 * 100000000, CScript([OP_TRUE])))
tx.calc_sha256()
block102 = create_block(self.tip, create_coinbase(height), self.block_time)
self.block_time += 1
block102.vtx.extend([tx])
block102.hashMerkleRoot = block102.calc_merkle_root()
block102.rehash()
block102.solve()
self.blocks.append(block102)
self.tip = block102.sha256
self.block_time += 1
height += 1
# Bury the assumed valid block 8400 deep (Dash needs 4x as much blocks to allow -assumevalid to work)
for _ in range(8400):
block = create_block(self.tip, create_coinbase(height), self.block_time)
block.nVersion = 4
block.solve()
self.blocks.append(block)
self.tip = block.sha256
self.block_time += 1
height += 1
self.nodes[0].disconnect_p2ps()
# Start node1 and node2 with assumevalid so they accept a block with a bad signature.
self.start_node(1, extra_args=self.extra_args + ["-assumevalid=" + hex(block102.sha256)])
self.start_node(2, extra_args=self.extra_args + ["-assumevalid=" + hex(block102.sha256)])
p2p0 = self.nodes[0].add_p2p_connection(BaseNode())
p2p1 = self.nodes[1].add_p2p_connection(BaseNode())
p2p2 = self.nodes[2].add_p2p_connection(BaseNode())
# Make sure nodes actually accept the many headers
self.mocktime = self.block_time
set_node_times(self.nodes, self.mocktime)
# send header lists to all three nodes.
# node0 does not need to receive all headers
# node1 must receive all headers as otherwise assumevalid is ignored in ConnectBlock
# node2 should NOT receive all headers to force skipping of the assumevalid check in ConnectBlock
p2p0.send_header_for_blocks(self.blocks[0:2000])
p2p1.send_header_for_blocks(self.blocks[0:2000])
p2p1.send_header_for_blocks(self.blocks[2000:4000])
p2p1.send_header_for_blocks(self.blocks[4000:6000])
p2p1.send_header_for_blocks(self.blocks[6000:8000])
p2p1.send_header_for_blocks(self.blocks[8000:])
p2p2.send_header_for_blocks(self.blocks[0:200])
# Send blocks to node0. Block 102 will be rejected.
self.send_blocks_until_disconnected(p2p0)
wait_until(lambda: self.nodes[0].getblockcount() >= COINBASE_MATURITY + 1)
assert_equal(self.nodes[0].getblockcount(), COINBASE_MATURITY + 1)
# Send 200 blocks to node1. All blocks, including block 102, will be accepted.
for i in range(200):
p2p1.send_message(msg_block(self.blocks[i]))
# Syncing so many blocks can take a while on slow systems. Give it plenty of time to sync.
p2p1.sync_with_ping(960)
assert_equal(self.nodes[1].getblock(self.nodes[1].getbestblockhash())['height'], 200)
# Send blocks to node2. Block 102 will be rejected.
self.send_blocks_until_disconnected(p2p2)
wait_until(lambda: self.nodes[2].getblockcount() >= COINBASE_MATURITY + 1)
assert_equal(self.nodes[2].getblockcount(), COINBASE_MATURITY + 1)
if __name__ == '__main__':
AssumeValidTest().main()