dash/src/net.cpp
2023-01-19 03:42:49 +00:00

4027 lines
140 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2019 The Bitcoin Core developers
// Copyright (c) 2014-2023 The Dash Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <net.h>
#include <netmessagemaker.h>
#include <banman.h>
#include <clientversion.h>
#include <consensus/consensus.h>
#include <crypto/sha256.h>
#include <net_permissions.h>
#include <netbase.h>
#include <random.h>
#include <scheduler.h>
#include <ui_interface.h>
#include <util/sock.h>
#include <util/strencodings.h>
#include <util/translation.h>
#include <validation.h>
#include <masternode/meta.h>
#include <masternode/sync.h>
#include <coinjoin/coinjoin.h>
#include <evo/deterministicmns.h>
#include <statsd_client.h>
#ifdef WIN32
#include <string.h>
#else
#include <fcntl.h>
#endif
#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
#include <ifaddrs.h>
#endif
#ifdef USE_POLL
#include <poll.h>
#endif
#ifdef USE_EPOLL
#include <sys/epoll.h>
#endif
#ifdef USE_KQUEUE
#include <sys/event.h>
#endif
#include <cstdint>
#include <unordered_map>
#include <math.h>
// How often to dump addresses to peers.dat
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
/** Number of DNS seeds to query when the number of connections is low. */
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
/** How long to delay before querying DNS seeds
*
* If we have more than THRESHOLD entries in addrman, then it's likely
* that we got those addresses from having previously connected to the P2P
* network, and that we'll be able to successfully reconnect to the P2P
* network via contacting one of them. So if that's the case, spend a
* little longer trying to connect to known peers before querying the
* DNS seeds.
*/
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
/** The default timeframe for -maxuploadtarget. 1 day. */
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
#define FEELER_SLEEP_WINDOW 1
// MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define it as 0
#if !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0
#if !defined(MSG_DONTWAIT)
#define MSG_DONTWAIT 0
#endif
/** Used to pass flags to the Bind() function */
enum BindFlags {
BF_NONE = 0,
BF_EXPLICIT = (1U << 0),
BF_REPORT_ERROR = (1U << 1),
};
#ifndef USE_WAKEUP_PIPE
// The set of sockets cannot be modified while waiting
// The sleep time needs to be small to avoid new sockets stalling
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
#else
// select() is woken up through the wakeup pipe whenever a new node is added, so we can wait much longer.
// We are however still somewhat limited in how long we can sleep as there is periodic work (cleanup) to be done in
// the socket handler thread
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 500;
#endif
const std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
constexpr const CConnman::CFullyConnectedOnly CConnman::FullyConnectedOnly;
constexpr const CConnman::CAllNodes CConnman::AllNodes;
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
//
// Global state variables
//
bool fDiscover = true;
bool fListen = true;
bool g_relay_txes = !DEFAULT_BLOCKSONLY;
CCriticalSection cs_mapLocalHost;
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
std::string strSubVersion;
void CConnman::AddOneShot(const std::string& strDest)
{
LOCK(cs_vOneShots);
vOneShots.push_back(strDest);
}
uint16_t GetListenPort()
{
return static_cast<uint16_t>(gArgs.GetArg("-port", Params().GetDefaultPort()));
}
// find 'best' local address for a particular peer
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
{
if (!fListen)
return false;
int nBestScore = -1;
int nBestReachability = -1;
{
LOCK(cs_mapLocalHost);
for (const auto& entry : mapLocalHost)
{
int nScore = entry.second.nScore;
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
{
addr = CService(entry.first, entry.second.nPort);
nBestReachability = nReachability;
nBestScore = nScore;
}
}
}
return nBestScore >= 0;
}
//! Convert the pnSeed6 array into usable address objects.
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
{
// It'll only connect to one or two seed nodes because once it connects,
// it'll get a pile of addresses with newer timestamps.
// Seed nodes are given a random 'last seen time' of between one and two
// weeks ago.
const int64_t nOneWeek = 7*24*60*60;
std::vector<CAddress> vSeedsOut;
vSeedsOut.reserve(vSeedsIn.size());
FastRandomContext rng;
for (const auto& seed_in : vSeedsIn) {
struct in6_addr ip;
memcpy(&ip, seed_in.addr, sizeof(ip));
CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE));
addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
vSeedsOut.push_back(addr);
}
return vSeedsOut;
}
// get best local address for a particular peer as a CAddress
// Otherwise, return the unroutable 0.0.0.0 but filled in with
// the normal parameters, since the IP may be changed to a useful
// one by discovery.
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
{
CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
CService addr;
if (GetLocal(addr, paddrPeer))
{
ret = CAddress(addr, nLocalServices);
}
ret.nTime = GetAdjustedTime();
return ret;
}
static int GetnScore(const CService& addr)
{
LOCK(cs_mapLocalHost);
const auto it = mapLocalHost.find(addr);
return (it != mapLocalHost.end()) ? it->second.nScore : 0;
}
// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood(CNode *pnode)
{
CService addrLocal = pnode->GetAddrLocal();
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
IsReachable(addrLocal.GetNetwork());
}
// pushes our own address to a peer
void AdvertiseLocal(CNode *pnode)
{
if (fListen && pnode->fSuccessfullyConnected)
{
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
if (gArgs.GetBoolArg("-addrmantest", false)) {
// use IPv4 loopback during addrmantest
addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices());
}
// If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our
// address than we do.
FastRandomContext rng;
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
{
addrLocal.SetIP(pnode->GetAddrLocal());
}
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
{
LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
pnode->PushAddress(addrLocal, rng);
}
}
}
// learn a new local address
bool AddLocal(const CService& addr, int nScore)
{
if (!addr.IsRoutable() && Params().RequireRoutableExternalIP())
return false;
if (!fDiscover && nScore < LOCAL_MANUAL)
return false;
if (!IsReachable(addr))
return false;
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
{
LOCK(cs_mapLocalHost);
const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
LocalServiceInfo &info = it->second;
if (is_newly_added || nScore >= info.nScore) {
info.nScore = nScore + (is_newly_added ? 0 : 1);
info.nPort = addr.GetPort();
}
}
return true;
}
bool AddLocal(const CNetAddr &addr, int nScore)
{
return AddLocal(CService(addr, GetListenPort()), nScore);
}
void RemoveLocal(const CService& addr)
{
LOCK(cs_mapLocalHost);
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
mapLocalHost.erase(addr);
}
void SetReachable(enum Network net, bool reachable)
{
if (net == NET_UNROUTABLE || net == NET_INTERNAL)
return;
LOCK(cs_mapLocalHost);
vfLimited[net] = !reachable;
}
bool IsReachable(enum Network net)
{
LOCK(cs_mapLocalHost);
return !vfLimited[net];
}
bool IsReachable(const CNetAddr &addr)
{
return IsReachable(addr.GetNetwork());
}
/** vote for a local address */
bool SeenLocal(const CService& addr)
{
LOCK(cs_mapLocalHost);
const auto it = mapLocalHost.find(addr);
if (it == mapLocalHost.end()) return false;
++it->second.nScore;
return true;
}
/** check whether a given address is potentially local */
bool IsLocal(const CService& addr)
{
LOCK(cs_mapLocalHost);
return mapLocalHost.count(addr) > 0;
}
CNode* CConnman::FindNode(const CNetAddr& ip, bool fExcludeDisconnecting)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (fExcludeDisconnecting && pnode->fDisconnect) {
continue;
}
if (static_cast<CNetAddr>(pnode->addr) == ip) {
return pnode;
}
}
return nullptr;
}
CNode* CConnman::FindNode(const CSubNet& subNet, bool fExcludeDisconnecting)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (fExcludeDisconnecting && pnode->fDisconnect) {
continue;
}
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
return pnode;
}
}
return nullptr;
}
CNode* CConnman::FindNode(const std::string& addrName, bool fExcludeDisconnecting)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (fExcludeDisconnecting && pnode->fDisconnect) {
continue;
}
if (pnode->GetAddrName() == addrName) {
return pnode;
}
}
return nullptr;
}
CNode* CConnman::FindNode(const CService& addr, bool fExcludeDisconnecting)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (fExcludeDisconnecting && pnode->fDisconnect) {
continue;
}
if (static_cast<CService>(pnode->addr) == addr) {
return pnode;
}
}
return nullptr;
}
bool CConnman::CheckIncomingNonce(uint64_t nonce)
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce)
return false;
}
return true;
}
/** Get the bind address for a socket as CAddress */
static CAddress GetBindAddress(SOCKET sock)
{
CAddress addr_bind;
struct sockaddr_storage sockaddr_bind;
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
if (sock != INVALID_SOCKET) {
if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
} else {
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
}
}
return addr_bind;
}
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection, bool block_relay_only)
{
if (pszDest == nullptr) {
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
if (!fAllowLocal && IsLocal(addrConnect)) {
return nullptr;
}
// Look for an existing connection
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode)
{
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
/// debug print
if (fLogIPs) {
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
pszDest ? pszDest : addrConnect.ToString(),
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
} else {
LogPrint(BCLog::NET, "trying connection lastseen=%.1fhrs\n",
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
}
// Resolve
const uint16_t default_port{Params().GetDefaultPort()};
if (pszDest) {
std::vector<CService> resolved;
if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) {
addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
if (!addrConnect.IsValid()) {
LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest);
return nullptr;
}
// It is possible that we already have a connection to the IP/port pszDest resolved to.
// In that case, drop the connection that was just created, and return the existing CNode instead.
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that
// name catch this early.
LOCK(cs_vNodes);
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode)
{
pnode->MaybeSetAddrName(std::string(pszDest));
LogPrintf("Failed to open new connection, already connected\n");
return nullptr;
}
}
}
// Connect
bool connected = false;
std::unique_ptr<Sock> sock;
proxyType proxy;
if (addrConnect.IsValid()) {
bool proxyConnectionFailed = false;
if (GetProxy(addrConnect.GetNetwork(), proxy)) {
sock = CreateSock(proxy.proxy);
if (!sock) {
return nullptr;
}
connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(),
*sock, nConnectTimeout, proxyConnectionFailed);
} else {
// no proxy needed (none set for target network)
sock = CreateSock(addrConnect);
if (!sock) {
return nullptr;
}
connected = ConnectSocketDirectly(addrConnect, sock->Get(), nConnectTimeout, manual_connection);
}
if (!proxyConnectionFailed) {
// If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
// the proxy, mark this as an attempt.
addrman.Attempt(addrConnect, fCountFailure);
}
} else if (pszDest && GetNameProxy(proxy)) {
sock = CreateSock(proxy.proxy);
if (!sock) {
return nullptr;
}
std::string host;
uint16_t port{default_port};
SplitHostPort(std::string(pszDest), port, host);
bool proxyConnectionFailed;
connected = ConnectThroughProxy(proxy, host, port, *sock, nConnectTimeout,
proxyConnectionFailed);
}
if (!connected) {
return nullptr;
}
// Add node
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
CAddress addr_bind = GetBindAddress(sock->Get());
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), sock->Release(), addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false, block_relay_only);
pnode->AddRef();
statsClient.inc("peers.connect", 1.0f);
// We're making a new connection, harvest entropy from the time (and our peer count)
RandAddEvent((uint32_t)id);
return pnode;
}
void CNode::CloseSocketDisconnect(CConnman* connman)
{
AssertLockHeld(connman->cs_vNodes);
fDisconnect = true;
LOCK(cs_hSocket);
if (hSocket == INVALID_SOCKET) {
return;
}
fHasRecvData = false;
fCanSendData = false;
connman->mapSocketToNode.erase(hSocket);
connman->mapReceivableNodes.erase(GetId());
connman->mapSendableNodes.erase(GetId());
{
LOCK(connman->cs_mapNodesWithDataToSend);
if (connman->mapNodesWithDataToSend.erase(GetId()) != 0) {
// See comment in PushMessage
Release();
}
}
connman->UnregisterEvents(this);
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
CloseSocket(hSocket);
statsClient.inc("peers.disconnect", 1.0f);
}
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
for (const auto& subnet : vWhitelistedRange) {
if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
}
}
std::string CNode::GetAddrName() const {
LOCK(cs_addrName);
return addrName;
}
void CNode::MaybeSetAddrName(const std::string& addrNameIn) {
LOCK(cs_addrName);
if (addrName.empty()) {
addrName = addrNameIn;
}
}
CService CNode::GetAddrLocal() const {
LOCK(cs_addrLocal);
return addrLocal;
}
void CNode::SetAddrLocal(const CService& addrLocalIn) {
LOCK(cs_addrLocal);
if (addrLocal.IsValid()) {
error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
} else {
addrLocal = addrLocalIn;
}
}
std::string CNode::GetLogString() const
{
return fLogIPs ? addr.ToString() : strprintf("%d", id);
}
#undef X
#define X(name) stats.name = name
void CNode::copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap)
{
stats.nodeid = this->GetId();
X(nServices);
X(addr);
X(addrBind);
stats.m_mapped_as = addr.GetMappedAS(m_asmap);
if (!m_block_relay_only_peer) {
LOCK(m_tx_relay->cs_filter);
stats.fRelayTxes = m_tx_relay->fRelayTxes;
} else {
stats.fRelayTxes = false;
}
X(nLastSend);
X(nLastRecv);
X(nTimeConnected);
X(nTimeOffset);
stats.addrName = GetAddrName();
X(nVersion);
{
LOCK(cs_SubVer);
X(cleanSubVer);
}
X(fInbound);
X(m_manual_connection);
X(nStartingHeight);
{
LOCK(cs_vSend);
X(mapSendBytesPerMsgCmd);
X(nSendBytes);
}
{
LOCK(cs_vRecv);
X(mapRecvBytesPerMsgCmd);
X(nRecvBytes);
}
X(m_legacyWhitelisted);
X(m_permissionFlags);
// It is common for nodes with good ping times to suddenly become lagged,
// due to a new block arriving or other large transfer.
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
// since pingtime does not update until the ping is complete, which might take a while.
// So, if a ping is taking an unusually long time in flight,
// the caller can immediately detect that this is happening.
int64_t nPingUsecWait = 0;
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
nPingUsecWait = GetTimeMicros() - nPingUsecStart;
}
// Raw ping time is in microseconds, but show it to user as whole seconds (Dash users should be well used to small numbers with many decimal places by now :)
stats.m_ping_usec = nPingUsecTime;
stats.m_min_ping_usec = nMinPingUsecTime;
stats.m_ping_wait_usec = nPingUsecWait;
// Leave string empty if addrLocal invalid (not filled in yet)
CService addrLocalUnlocked = GetAddrLocal();
stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
{
LOCK(cs_mnauth);
X(verifiedProRegTxHash);
X(verifiedPubKeyHash);
}
X(m_masternode_connection);
}
#undef X
/**
* Receive bytes from the buffer and deserialize them into messages.
*
* @param[in] pch A pointer to the raw data
* @param[in] nBytes Size of the data
* @param[out] complete Set True if at least one message has been
* deserialized and is ready to be processed
* @return True if the peer should stay connected,
* False if the peer should be disconnected from.
*/
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
{
complete = false;
int64_t nTimeMicros = GetTimeMicros();
LOCK(cs_vRecv);
nLastRecv = nTimeMicros / 1000000;
nRecvBytes += nBytes;
while (nBytes > 0) {
// absorb network data
int handled = m_deserializer->Read(pch, nBytes);
if (handled < 0) {
// Serious header problem, disconnect from the peer.
return false;
}
pch += handled;
nBytes -= handled;
if (m_deserializer->Complete()) {
// decompose a transport agnostic CNetMessage from the deserializer
uint32_t out_err_raw_size{0};
std::optional<CNetMessage> result{m_deserializer->GetMessage(nTimeMicros, out_err_raw_size)};
if (!result) {
// Message deserialization failed. Drop the message but don't disconnect the peer.
// store the size of the corrupt message
mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER)->second += out_err_raw_size;
continue;
}
//store received bytes per message command
//to prevent a memory DOS, only allow valid commands
mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(result->m_command);
if (i == mapRecvBytesPerMsgCmd.end())
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
assert(i != mapRecvBytesPerMsgCmd.end());
i->second += result->m_raw_message_size;
statsClient.count("bandwidth.message." + std::string(result->m_command) + ".bytesReceived", result->m_raw_message_size, 1.0f);
// push the message to the process queue,
vRecvMsg.push_back(std::move(*result));
complete = true;
}
}
return true;
}
void CNode::SetSendVersion(int nVersionIn)
{
// Send version may only be changed in the version message, and
// only one version message is allowed per session. We can therefore
// treat this value as const and even atomic as long as it's only used
// once a version message has been successfully processed. Any attempt to
// set this twice is an error.
if (nSendVersion != 0) {
error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn);
} else {
nSendVersion = nVersionIn;
}
}
int CNode::GetSendVersion() const
{
// The send version should always be explicitly set to
// INIT_PROTO_VERSION rather than using this value until SetSendVersion
// has been called.
if (nSendVersion == 0) {
error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION);
return INIT_PROTO_VERSION;
}
return nSendVersion;
}
int V1TransportDeserializer::readHeader(const char *pch, unsigned int nBytes)
{
// copy data to temporary parsing buffer
unsigned int nRemaining = 24 - nHdrPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
nHdrPos += nCopy;
// if header incomplete, exit
if (nHdrPos < 24)
return nCopy;
// deserialize to CMessageHeader
try {
hdrbuf >> hdr;
}
catch (const std::exception&) {
LogPrint(BCLog::NET, "HEADER ERROR - UNABLE TO DESERIALIZE, peer=%d\n", m_node_id);
return -1;
}
// Check start string, network magic
if (memcmp(hdr.pchMessageStart, m_chain_params.MessageStart(), CMessageHeader::MESSAGE_START_SIZE) != 0) {
LogPrint(BCLog::NET, "HEADER ERROR - MESSAGESTART (%s, %u bytes), received %s, peer=%d\n", hdr.GetCommand(), hdr.nMessageSize, HexStr(hdr.pchMessageStart), m_node_id);
return -1;
}
// reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
LogPrint(BCLog::NET, "HEADER ERROR - SIZE (%s, %u bytes), peer=%d\n", hdr.GetCommand(), hdr.nMessageSize, m_node_id);
return -1;
}
// switch state to reading message data
in_data = true;
return nCopy;
}
int V1TransportDeserializer::readData(const char *pch, unsigned int nBytes)
{
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
if (vRecv.size() < nDataPos + nCopy) {
// Allocate up to 256 KiB ahead, but never more than the total message size.
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
}
hasher.Write({(const unsigned char*)pch, nCopy});
memcpy(&vRecv[nDataPos], pch, nCopy);
nDataPos += nCopy;
return nCopy;
}
const uint256& V1TransportDeserializer::GetMessageHash() const
{
assert(Complete());
if (data_hash.IsNull())
hasher.Finalize(data_hash);
return data_hash;
}
std::optional<CNetMessage> V1TransportDeserializer::GetMessage(int64_t time, uint32_t& out_err_raw_size)
{
// decompose a single CNetMessage from the TransportDeserializer
std::optional<CNetMessage> msg(std::move(vRecv));
// store command string, time, and sizes
msg->m_command = hdr.GetCommand();
msg->m_time = time;
msg->m_message_size = hdr.nMessageSize;
msg->m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
uint256 hash = GetMessageHash();
// We just received a message off the wire, harvest entropy from the time (and the message checksum)
RandAddEvent(ReadLE32(hash.begin()));
// Check checksum and header command string
if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
LogPrint(BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s, peer=%d\n",
SanitizeString(msg->m_command), msg->m_message_size,
HexStr(Span<uint8_t>(hash.begin(), hash.begin()+CMessageHeader::CHECKSUM_SIZE)),
HexStr(Span<uint8_t>(hdr.pchChecksum, hdr.pchChecksum+CMessageHeader::CHECKSUM_SIZE)),
m_node_id);
out_err_raw_size = msg->m_raw_message_size;
msg.reset();
} else if (!hdr.IsCommandValid()) {
LogPrint(BCLog::NET, "HEADER ERROR - COMMAND (%s, %u bytes), peer=%d\n",
hdr.GetCommand(), msg->m_message_size, m_node_id);
out_err_raw_size = msg->m_raw_message_size;
msg.reset();
}
// Always reset the network deserializer (prepare for the next message)
Reset();
return msg;
}
void V1TransportSerializer::prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) {
// create dbl-sha256 checksum
uint256 hash = Hash(msg.data.begin(), msg.data.end());
// create header
CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), msg.data.size());
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
// serialize header
header.reserve(CMessageHeader::HEADER_SIZE);
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
}
size_t CConnman::SocketSendData(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend)
{
auto it = pnode->vSendMsg.begin();
size_t nSentSize = 0;
while (it != pnode->vSendMsg.end()) {
const auto &data = *it;
assert(data.size() > pnode->nSendOffset);
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
break;
nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
}
if (nBytes > 0) {
pnode->nLastSend = GetSystemTimeInSeconds();
pnode->nSendBytes += nBytes;
pnode->nSendOffset += nBytes;
nSentSize += nBytes;
if (pnode->nSendOffset == data.size()) {
pnode->nSendOffset = 0;
pnode->nSendSize -= data.size();
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
it++;
} else {
// could not send full message; stop sending more
pnode->fCanSendData = false;
break;
}
} else {
if (nBytes < 0) {
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
LogPrintf("socket send error %s (peer=%d)\n", NetworkErrorString(nErr), pnode->GetId());
pnode->fDisconnect = true;
}
}
// couldn't send anything at all
pnode->fCanSendData = false;
break;
}
}
if (it == pnode->vSendMsg.end()) {
assert(pnode->nSendOffset == 0);
assert(pnode->nSendSize == 0);
}
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
pnode->nSendMsgSize = pnode->vSendMsg.size();
return nSentSize;
}
struct NodeEvictionCandidate
{
NodeId id;
int64_t nTimeConnected;
int64_t nMinPingUsecTime;
int64_t nLastBlockTime;
int64_t nLastTXTime;
bool fRelevantServices;
bool fRelayTxes;
bool fBloomFilter;
uint64_t nKeyedNetGroup;
bool prefer_evict;
};
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
{
return a.nMinPingUsecTime > b.nMinPingUsecTime;
}
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
{
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
return a.nKeyedNetGroup < b.nKeyedNetGroup;
}
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
return a.nTimeConnected > b.nTimeConnected;
}
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
return a.nTimeConnected > b.nTimeConnected;
}
//! Sort an array by the specified comparator, then erase the last K elements.
template<typename T, typename Comparator>
static void EraseLastKElements(std::vector<T> &elements, Comparator comparator, size_t k)
{
std::sort(elements.begin(), elements.end(), comparator);
size_t eraseSize = std::min(k, elements.size());
elements.erase(elements.end() - eraseSize, elements.end());
}
/** Try to find a connection to evict when the node is full.
* Extreme care must be taken to avoid opening the node to attacker
* triggered network partitioning.
* The strategy used here is to protect a small number of peers
* for each of several distinct characteristics which are difficult
* to forge. In order to partition a node the attacker must be
* simultaneously better at all of them than honest peers.
*/
bool CConnman::AttemptToEvictConnection()
{
std::vector<NodeEvictionCandidate> vEvictionCandidates;
{
LOCK(cs_vNodes);
for (const CNode* node : vNodes) {
if (node->HasPermission(PF_NOBAN))
continue;
if (!node->fInbound)
continue;
if (node->fDisconnect)
continue;
if (fMasternodeMode) {
// This handles eviction protected nodes. Nodes are always protected for a short time after the connection
// was accepted. This short time is meant for the VERSION/VERACK exchange and the possible MNAUTH that might
// follow when the incoming connection is from another masternode. When a message other than MNAUTH
// is received after VERSION/VERACK, the protection is lifted immediately.
bool isProtected = GetSystemTimeInSeconds() - node->nTimeConnected < INBOUND_EVICTION_PROTECTION_TIME;
if (node->nTimeFirstMessageReceived != 0 && !node->fFirstMessageIsMNAUTH) {
isProtected = false;
}
// if MNAUTH was valid, the node is always protected (and at the same time not accounted when
// checking incoming connection limits)
if (!node->GetVerifiedProRegTxHash().IsNull()) {
isProtected = true;
}
if (isProtected) {
continue;
}
}
bool peer_relay_txes = false;
bool peer_filter_not_null = false;
if (!node->m_block_relay_only_peer) {
LOCK(node->m_tx_relay->cs_filter);
peer_relay_txes = node->m_tx_relay->fRelayTxes;
peer_filter_not_null = node->m_tx_relay->pfilter != nullptr;
}
NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime,
node->nLastBlockTime, node->nLastTXTime,
HasAllDesirableServiceFlags(node->nServices),
peer_relay_txes, peer_filter_not_null, node->nKeyedNetGroup,
node->m_prefer_evict};
vEvictionCandidates.push_back(candidate);
}
}
// Protect connections with certain characteristics
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
// Protect the 8 nodes with the lowest minimum ping time.
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
// Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
// Protect 4 nodes that most recently sent us novel blocks.
// An attacker cannot manipulate this metric without performing useful work.
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
// Protect the half of the remaining nodes which have been connected the longest.
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2);
if (vEvictionCandidates.empty()) return false;
// If any remaining peers are preferred for eviction consider only them.
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
// then we probably don't want to evict it no matter what.
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
}
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
uint64_t naMostConnections;
unsigned int nMostConnections = 0;
int64_t nMostConnectionsTime = 0;
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
group.push_back(node);
int64_t grouptime = group[0].nTimeConnected;
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
nMostConnections = group.size();
nMostConnectionsTime = grouptime;
naMostConnections = node.nKeyedNetGroup;
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
// Disconnect from the network group with the most connections
NodeId evicted = vEvictionCandidates.front().id;
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (pnode->GetId() == evicted) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
CAddress addr;
int nInbound = 0;
int nVerifiedInboundMasternodes = 0;
int nMaxInbound = nMaxConnections - m_max_outbound;
if (hSocket != INVALID_SOCKET) {
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
LogPrintf("Warning: Unknown socket family\n");
}
}
NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE;
hListenSocket.AddSocketPermissionFlags(permissionFlags);
AddWhitelistPermissionFlags(permissionFlags, addr);
bool legacyWhitelisted = false;
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_ISIMPLICIT)) {
NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT);
if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY);
if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permissionFlags, PF_RELAY);
NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL);
NetPermissions::AddFlag(permissionFlags, PF_NOBAN);
legacyWhitelisted = true;
}
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->fInbound) {
nInbound++;
if (!pnode->GetVerifiedProRegTxHash().IsNull()) {
nVerifiedInboundMasternodes++;
}
}
}
}
if (hSocket == INVALID_SOCKET)
{
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK)
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
return;
}
std::string strDropped;
if (fLogIPs) {
strDropped = strprintf("connection from %s dropped", addr.ToString());
} else {
strDropped = "connection dropped";
}
if (!fNetworkActive) {
LogPrintf("%s: not accepting new connections\n", strDropped);
CloseSocket(hSocket);
return;
}
if (!IsSelectableSocket(hSocket))
{
LogPrintf("%s: non-selectable socket\n", strDropped);
CloseSocket(hSocket);
return;
}
// According to the internet TCP_NODELAY is not carried into accepted sockets
// on all platforms. Set it again here just to be sure.
SetSocketNoDelay(hSocket);
// Don't accept connections from banned peers.
bool banned = m_banman->IsBanned(addr);
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && banned)
{
LogPrint(BCLog::NET, "%s (banned)\n", strDropped);
CloseSocket(hSocket);
return;
}
// Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
bool discouraged = m_banman->IsDiscouraged(addr);
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && nInbound + 1 >= nMaxInbound && discouraged)
{
LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToString());
CloseSocket(hSocket);
return;
}
// Evict connections until we are below nMaxInbound. In case eviction protection resulted in nodes to not be evicted
// before, they might get evicted in batches now (after the protection timeout).
// We don't evict verified MN connections and also don't take them into account when checking limits. We can do this
// because we know that such connections are naturally limited by the total number of MNs, so this is not usable
// for attacks.
while (nInbound - nVerifiedInboundMasternodes >= nMaxInbound)
{
if (!AttemptToEvictConnection()) {
// No connection to evict, disconnect the new connection
LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
CloseSocket(hSocket);
return;
}
nInbound--;
}
// don't accept incoming connections until blockchain is synced
if(fMasternodeMode && !::masternodeSync->IsBlockchainSynced()) {
LogPrint(BCLog::NET, "AcceptConnection -- blockchain is not synced yet, skipping inbound connection attempt\n");
CloseSocket(hSocket);
return;
}
NodeId id = GetNewNodeId();
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
CAddress addr_bind = GetBindAddress(hSocket);
ServiceFlags nodeServices = nLocalServices;
if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) {
nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
}
CNode* pnode = new CNode(id, nodeServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true);
pnode->AddRef();
pnode->m_permissionFlags = permissionFlags;
// If this flag is present, the user probably expect that RPC and QT report it as whitelisted (backward compatibility)
pnode->m_legacyWhitelisted = legacyWhitelisted;
pnode->m_prefer_evict = discouraged;
m_msgproc->InitializeNode(pnode);
if (fLogIPs) {
LogPrint(BCLog::NET_NETCONN, "connection from %s accepted, sock=%d, peer=%d\n", addr.ToString(), hSocket, pnode->GetId());
} else {
LogPrint(BCLog::NET_NETCONN, "connection accepted, sock=%d, peer=%d\n", hSocket, pnode->GetId());
}
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
mapSocketToNode.emplace(hSocket, pnode);
RegisterEvents(pnode);
WakeSelect();
}
// We received a new connection, harvest entropy from the time (and our peer count)
RandAddEvent((uint32_t)id);
}
void CConnman::DisconnectNodes()
{
{
LOCK(cs_vNodes);
if (!fNetworkActive) {
// Disconnect any connected nodes
for (CNode* pnode : vNodes) {
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
pnode->fDisconnect = true;
}
}
}
// Disconnect unused nodes
for (auto it = vNodes.begin(); it != vNodes.end(); )
{
CNode* pnode = *it;
if (pnode->fDisconnect)
{
// If we were the ones who initiated the disconnect, we must assume that the other side wants to see
// pending messages. If the other side initiated the disconnect (or disconnected after we've shutdown
// the socket), we can be pretty sure that they are not interested in any pending messages anymore and
// thus can immediately close the socket.
if (!pnode->fOtherSideDisconnected) {
if (pnode->nDisconnectLingerTime == 0) {
// let's not immediately close the socket but instead wait for at least 100ms so that there is a
// chance to flush all/some pending data. Otherwise the other side might not receive REJECT messages
// that were pushed right before setting fDisconnect=true
// Flushing must happen in two places to ensure data can be received by the other side:
// 1. vSendMsg must be empty and all messages sent via send(). This is ensured by SocketHandler()
// being called before DisconnectNodes and also by the linger time
// 2. Internal socket send buffers must be flushed. This is ensured solely by the linger time
pnode->nDisconnectLingerTime = GetTimeMillis() + 100;
}
if (GetTimeMillis() < pnode->nDisconnectLingerTime) {
// everything flushed to the kernel?
if (!pnode->fSocketShutdown && pnode->nSendMsgSize == 0) {
LOCK(pnode->cs_hSocket);
if (pnode->hSocket != INVALID_SOCKET) {
// Give the other side a chance to detect the disconnect as early as possible (recv() will return 0)
::shutdown(pnode->hSocket, SD_SEND);
}
pnode->fSocketShutdown = true;
}
++it;
continue;
}
}
if (fLogIPs) {
LogPrintf("ThreadSocketHandler -- removing node: peer=%d addr=%s nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n",
pnode->GetId(), pnode->addr.ToString(), pnode->GetRefCount(), pnode->fInbound, pnode->m_masternode_connection, pnode->m_masternode_iqr_connection);
} else {
LogPrintf("ThreadSocketHandler -- removing node: peer=%d nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n",
pnode->GetId(), pnode->GetRefCount(), pnode->fInbound, pnode->m_masternode_connection, pnode->m_masternode_iqr_connection);
}
// remove from vNodes
it = vNodes.erase(it);
// release outbound grant (if any)
pnode->grantOutbound.Release();
// close socket and cleanup
pnode->CloseSocketDisconnect(this);
// hold in disconnected pool until all refs are released
pnode->Release();
vNodesDisconnected.push_back(pnode);
} else {
++it;
}
}
}
{
// Delete disconnected nodes
std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
for (auto it = vNodesDisconnected.begin(); it != vNodesDisconnected.end(); )
{
CNode* pnode = *it;
// wait until threads are done using it
bool fDelete = false;
if (pnode->GetRefCount() <= 0) {
{
TRY_LOCK(pnode->cs_inventory, lockInv);
if (lockInv) {
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend) {
fDelete = true;
}
}
}
if (fDelete) {
it = vNodesDisconnected.erase(it);
DeleteNode(pnode);
}
}
if (!fDelete) {
++it;
}
}
}
}
void CConnman::NotifyNumConnectionsChanged()
{
size_t vNodesSize;
{
LOCK(cs_vNodes);
vNodesSize = vNodes.size();
}
// If we had zero connections before and new connections now or if we just dropped
// to zero connections reset the sync process if its outdated.
if ((vNodesSize > 0 && nPrevNodeCount == 0) || (vNodesSize == 0 && nPrevNodeCount > 0)) {
::masternodeSync->Reset();
}
if(vNodesSize != nPrevNodeCount) {
nPrevNodeCount = vNodesSize;
if(clientInterface)
clientInterface->NotifyNumConnectionsChanged(vNodesSize);
CalculateNumConnectionsChangedStats();
}
}
void CConnman::CalculateNumConnectionsChangedStats()
{
if (!gArgs.GetBoolArg("-statsenabled", DEFAULT_STATSD_ENABLE)) {
return;
}
// count various node attributes for statsD
int fullNodes = 0;
int spvNodes = 0;
int inboundNodes = 0;
int outboundNodes = 0;
int ipv4Nodes = 0;
int ipv6Nodes = 0;
int torNodes = 0;
mapMsgCmdSize mapRecvBytesMsgStats;
mapMsgCmdSize mapSentBytesMsgStats;
for (const std::string &msg : getAllNetMessageTypes()) {
mapRecvBytesMsgStats[msg] = 0;
mapSentBytesMsgStats[msg] = 0;
}
mapRecvBytesMsgStats[NET_MESSAGE_COMMAND_OTHER] = 0;
mapSentBytesMsgStats[NET_MESSAGE_COMMAND_OTHER] = 0;
auto vNodesCopy = CopyNodeVector(CConnman::FullyConnectedOnly);
for (auto pnode : vNodesCopy) {
LOCK(pnode->cs_vRecv);
for (const mapMsgCmdSize::value_type &i : pnode->mapRecvBytesPerMsgCmd)
mapRecvBytesMsgStats[i.first] += i.second;
for (const mapMsgCmdSize::value_type &i : pnode->mapSendBytesPerMsgCmd)
mapSentBytesMsgStats[i.first] += i.second;
if(pnode->fClient)
spvNodes++;
else
fullNodes++;
if(pnode->fInbound)
inboundNodes++;
else
outboundNodes++;
if(pnode->addr.IsIPv4())
ipv4Nodes++;
if(pnode->addr.IsIPv6())
ipv6Nodes++;
if(pnode->addr.IsTor())
torNodes++;
if(pnode->nPingUsecTime > 0)
statsClient.timing("peers.ping_us", pnode->nPingUsecTime, 1.0f);
}
ReleaseNodeVector(vNodesCopy);
for (const std::string &msg : getAllNetMessageTypes()) {
statsClient.gauge("bandwidth.message." + msg + ".totalBytesReceived", mapRecvBytesMsgStats[msg], 1.0f);
statsClient.gauge("bandwidth.message." + msg + ".totalBytesSent", mapSentBytesMsgStats[msg], 1.0f);
}
statsClient.gauge("peers.totalConnections", nPrevNodeCount, 1.0f);
statsClient.gauge("peers.spvNodeConnections", spvNodes, 1.0f);
statsClient.gauge("peers.fullNodeConnections", fullNodes, 1.0f);
statsClient.gauge("peers.inboundConnections", inboundNodes, 1.0f);
statsClient.gauge("peers.outboundConnections", outboundNodes, 1.0f);
statsClient.gauge("peers.ipv4Connections", ipv4Nodes, 1.0f);
statsClient.gauge("peers.ipv6Connections", ipv6Nodes, 1.0f);
statsClient.gauge("peers.torConnections", torNodes, 1.0f);
}
void CConnman::InactivityCheck(CNode *pnode)
{
int64_t nTime = GetSystemTimeInSeconds();
if (nTime - pnode->nTimeConnected > m_peer_connect_timeout)
{
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
{
LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d from %d\n", m_peer_connect_timeout, pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId());
pnode->fDisconnect = true;
}
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
{
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
pnode->fDisconnect = true;
}
else if (nTime - pnode->nLastRecv > TIMEOUT_INTERVAL)
{
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
pnode->fDisconnect = true;
}
else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
{
LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
pnode->fDisconnect = true;
}
else if (!pnode->fSuccessfullyConnected)
{
LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId());
pnode->fDisconnect = true;
}
}
}
bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
{
for (const ListenSocket& hListenSocket : vhListenSocket) {
recv_set.insert(hListenSocket.socket);
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes)
{
bool select_recv = !pnode->fHasRecvData;
bool select_send = !pnode->fCanSendData;
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
error_set.insert(pnode->hSocket);
if (select_send) {
send_set.insert(pnode->hSocket);
}
if (select_recv) {
recv_set.insert(pnode->hSocket);
}
}
}
#ifdef USE_WAKEUP_PIPE
// We add a pipe to the read set so that the select() call can be woken up from the outside
// This is done when data is added to send buffers (vSendMsg) or when new peers are added
// This is currently only implemented for POSIX compliant systems. This means that Windows will fall back to
// timing out after 50ms and then trying to send. This is ok as we assume that heavy-load daemons are usually
// run on Linux and friends.
recv_set.insert(wakeupPipe[0]);
#endif
return !recv_set.empty() || !send_set.empty() || !error_set.empty();
}
#ifdef USE_KQUEUE
void CConnman::SocketEventsKqueue(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
{
const size_t maxEvents = 64;
struct kevent events[maxEvents];
struct timespec timeout;
timeout.tv_sec = fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS / 1000;
timeout.tv_nsec = (fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS % 1000) * 1000 * 1000;
wakeupSelectNeeded = true;
int n = kevent(kqueuefd, nullptr, 0, events, maxEvents, &timeout);
wakeupSelectNeeded = false;
if (n == -1) {
LogPrintf("kevent wait error\n");
} else if (n > 0) {
for (int i = 0; i < n; i++) {
auto& event = events[i];
if ((event.flags & EV_ERROR) || (event.flags & EV_EOF)) {
error_set.insert((SOCKET)event.ident);
continue;
}
if (event.filter == EVFILT_READ) {
recv_set.insert((SOCKET)event.ident);
}
if (event.filter == EVFILT_WRITE) {
send_set.insert((SOCKET)event.ident);
}
}
}
}
#endif
#ifdef USE_EPOLL
void CConnman::SocketEventsEpoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
{
const size_t maxEvents = 64;
epoll_event events[maxEvents];
wakeupSelectNeeded = true;
int n = epoll_wait(epollfd, events, maxEvents, fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS);
wakeupSelectNeeded = false;
for (int i = 0; i < n; i++) {
auto& e = events[i];
if((e.events & EPOLLERR) || (e.events & EPOLLHUP)) {
error_set.insert((SOCKET)e.data.fd);
continue;
}
if (e.events & EPOLLIN) {
recv_set.insert((SOCKET)e.data.fd);
}
if (e.events & EPOLLOUT) {
send_set.insert((SOCKET)e.data.fd);
}
}
}
#endif
#ifdef USE_POLL
void CConnman::SocketEventsPoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
{
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
if (!fOnlyPoll) interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
return;
}
std::unordered_map<SOCKET, struct pollfd> pollfds;
for (SOCKET socket_id : recv_select_set) {
pollfds[socket_id].fd = socket_id;
pollfds[socket_id].events |= POLLIN;
}
for (SOCKET socket_id : send_select_set) {
pollfds[socket_id].fd = socket_id;
pollfds[socket_id].events |= POLLOUT;
}
for (SOCKET socket_id : error_select_set) {
pollfds[socket_id].fd = socket_id;
// These flags are ignored, but we set them for clarity
pollfds[socket_id].events |= POLLERR|POLLHUP;
}
std::vector<struct pollfd> vpollfds;
vpollfds.reserve(pollfds.size());
for (auto it : pollfds) {
vpollfds.push_back(std::move(it.second));
}
wakeupSelectNeeded = true;
int r = poll(vpollfds.data(), vpollfds.size(), fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS);
wakeupSelectNeeded = false;
if (r < 0) {
return;
}
if (interruptNet) return;
for (struct pollfd pollfd_entry : vpollfds) {
if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd);
if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd);
if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd);
}
}
#endif
void CConnman::SocketEventsSelect(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
{
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
return;
}
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
for (SOCKET hSocket : recv_select_set) {
FD_SET(hSocket, &fdsetRecv);
hSocketMax = std::max(hSocketMax, hSocket);
}
for (SOCKET hSocket : send_select_set) {
FD_SET(hSocket, &fdsetSend);
hSocketMax = std::max(hSocketMax, hSocket);
}
for (SOCKET hSocket : error_select_set) {
FD_SET(hSocket, &fdsetError);
hSocketMax = std::max(hSocketMax, hSocket);
}
wakeupSelectNeeded = true;
int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
wakeupSelectNeeded = false;
if (interruptNet)
return;
if (nSelect == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++)
FD_SET(i, &fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)))
return;
}
for (SOCKET hSocket : recv_select_set) {
if (FD_ISSET(hSocket, &fdsetRecv)) {
recv_set.insert(hSocket);
}
}
for (SOCKET hSocket : send_select_set) {
if (FD_ISSET(hSocket, &fdsetSend)) {
send_set.insert(hSocket);
}
}
for (SOCKET hSocket : error_select_set) {
if (FD_ISSET(hSocket, &fdsetError)) {
error_set.insert(hSocket);
}
}
}
void CConnman::SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
{
switch (socketEventsMode) {
#ifdef USE_KQUEUE
case SOCKETEVENTS_KQUEUE:
SocketEventsKqueue(recv_set, send_set, error_set, fOnlyPoll);
break;
#endif
#ifdef USE_EPOLL
case SOCKETEVENTS_EPOLL:
SocketEventsEpoll(recv_set, send_set, error_set, fOnlyPoll);
break;
#endif
#ifdef USE_POLL
case SOCKETEVENTS_POLL:
SocketEventsPoll(recv_set, send_set, error_set, fOnlyPoll);
break;
#endif
case SOCKETEVENTS_SELECT:
SocketEventsSelect(recv_set, send_set, error_set, fOnlyPoll);
break;
default:
assert(false);
}
}
void CConnman::SocketHandler()
{
bool fOnlyPoll = false;
{
// check if we have work to do and thus should avoid waiting for events
LOCK2(cs_vNodes, cs_mapNodesWithDataToSend);
if (!mapReceivableNodes.empty()) {
fOnlyPoll = true;
} else if (!mapSendableNodes.empty() && !mapNodesWithDataToSend.empty()) {
// we must check if at least one of the nodes with pending messages is also sendable, as otherwise a single
// node would be able to make the network thread busy with polling
for (auto& p : mapNodesWithDataToSend) {
if (mapSendableNodes.count(p.first)) {
fOnlyPoll = true;
break;
}
}
}
}
std::set<SOCKET> recv_set, send_set, error_set;
SocketEvents(recv_set, send_set, error_set, fOnlyPoll);
#ifdef USE_WAKEUP_PIPE
// drain the wakeup pipe
if (recv_set.count(wakeupPipe[0])) {
char buf[128];
while (true) {
int r = read(wakeupPipe[0], buf, sizeof(buf));
if (r <= 0) {
break;
}
}
}
#endif
if (interruptNet) return;
//
// Accept new connections
//
for (const ListenSocket& hListenSocket : vhListenSocket)
{
if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0)
{
AcceptConnection(hListenSocket);
}
}
std::vector<CNode*> vErrorNodes;
std::vector<CNode*> vReceivableNodes;
std::vector<CNode*> vSendableNodes;
{
LOCK(cs_vNodes);
for (auto hSocket : error_set) {
auto it = mapSocketToNode.find(hSocket);
if (it == mapSocketToNode.end()) {
continue;
}
it->second->AddRef();
vErrorNodes.emplace_back(it->second);
}
for (auto hSocket : recv_set) {
if (error_set.count(hSocket)) {
// no need to handle it twice
continue;
}
auto it = mapSocketToNode.find(hSocket);
if (it == mapSocketToNode.end()) {
continue;
}
auto jt = mapReceivableNodes.emplace(it->second->GetId(), it->second);
assert(jt.first->second == it->second);
it->second->fHasRecvData = true;
}
for (auto hSocket : send_set) {
auto it = mapSocketToNode.find(hSocket);
if (it == mapSocketToNode.end()) {
continue;
}
auto jt = mapSendableNodes.emplace(it->second->GetId(), it->second);
assert(jt.first->second == it->second);
it->second->fCanSendData = true;
}
// collect nodes that have a receivable socket
// also clean up mapReceivableNodes from nodes that were receivable in the last iteration but aren't anymore
vReceivableNodes.reserve(mapReceivableNodes.size());
for (auto it = mapReceivableNodes.begin(); it != mapReceivableNodes.end(); ) {
if (!it->second->fHasRecvData) {
it = mapReceivableNodes.erase(it);
} else {
// Implement the following logic:
// * If there is data to send, try sending data. As this only
// happens when optimistic write failed, we choose to first drain the
// write buffer in this case before receiving more. This avoids
// needlessly queueing received data, if the remote peer is not themselves
// receiving data. This means properly utilizing TCP flow control signalling.
// * Otherwise, if there is space left in the receive buffer (!fPauseRecv), try
// receiving data (which should succeed as the socket signalled as receivable).
if (!it->second->fPauseRecv && it->second->nSendMsgSize == 0 && !it->second->fDisconnect) {
it->second->AddRef();
vReceivableNodes.emplace_back(it->second);
}
++it;
}
}
// collect nodes that have data to send and have a socket with non-empty write buffers
// also clean up mapNodesWithDataToSend from nodes that had messages to send in the last iteration
// but don't have any in this iteration
LOCK(cs_mapNodesWithDataToSend);
vSendableNodes.reserve(mapNodesWithDataToSend.size());
for (auto it = mapNodesWithDataToSend.begin(); it != mapNodesWithDataToSend.end(); ) {
if (it->second->nSendMsgSize == 0) {
// See comment in PushMessage
it->second->Release();
it = mapNodesWithDataToSend.erase(it);
} else {
if (it->second->fCanSendData) {
it->second->AddRef();
vSendableNodes.emplace_back(it->second);
}
++it;
}
}
}
for (CNode* pnode : vErrorNodes)
{
if (interruptNet) {
break;
}
// let recv() return errors and then handle it
SocketRecvData(pnode);
}
for (CNode* pnode : vReceivableNodes)
{
if (interruptNet) {
break;
}
if (pnode->fPauseRecv) {
continue;
}
SocketRecvData(pnode);
}
for (CNode* pnode : vSendableNodes) {
if (interruptNet) {
break;
}
LOCK(pnode->cs_vSend);
size_t nBytes = SocketSendData(pnode);
if (nBytes) {
RecordBytesSent(nBytes);
}
}
ReleaseNodeVector(vErrorNodes);
ReleaseNodeVector(vReceivableNodes);
ReleaseNodeVector(vSendableNodes);
if (interruptNet) {
return;
}
{
LOCK(cs_vNodes);
// remove nodes from mapSendableNodes, so that the next iteration knows that there is no work to do
// (even if there are pending messages to be sent)
for (auto it = mapSendableNodes.begin(); it != mapSendableNodes.end(); ) {
if (!it->second->fCanSendData) {
LogPrint(BCLog::NET, "%s -- remove mapSendableNodes, peer=%d\n", __func__, it->second->GetId());
it = mapSendableNodes.erase(it);
} else {
++it;
}
}
}
}
size_t CConnman::SocketRecvData(CNode *pnode)
{
// typical socket buffer is 8K-64K
char pchBuf[0x10000];
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
return 0;
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
if (nBytes < (int)sizeof(pchBuf)) {
pnode->fHasRecvData = false;
}
}
if (nBytes > 0)
{
bool notify = false;
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify)) {
LOCK(cs_vNodes);
pnode->CloseSocketDisconnect(this);
}
RecordBytesRecv(nBytes);
if (notify) {
size_t nSizeAdded = 0;
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
// vRecvMsg contains only completed CNetMessage
// the single possible partially deserialized message are held by TransportDeserializer
nSizeAdded += it->m_raw_message_size;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler();
}
}
else if (nBytes == 0)
{
// socket closed gracefully
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
}
LOCK(cs_vNodes);
pnode->fOtherSideDisconnected = true; // avoid lingering
pnode->CloseSocketDisconnect(this);
}
else if (nBytes < 0)
{
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
if (!pnode->fDisconnect){
LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
}
LOCK(cs_vNodes);
pnode->fOtherSideDisconnected = true; // avoid lingering
pnode->CloseSocketDisconnect(this);
}
}
if (nBytes < 0) {
return 0;
}
return (size_t)nBytes;
}
void CConnman::ThreadSocketHandler()
{
int64_t nLastCleanupNodes = 0;
while (!interruptNet)
{
// Handle sockets before we do the next round of disconnects. This allows us to flush send buffers one last time
// before actually closing sockets. Receiving is however skipped in case a peer is pending to be disconnected
SocketHandler();
if (GetTimeMillis() - nLastCleanupNodes > 1000) {
ForEachNode(AllNodes, [&](CNode* pnode) {
InactivityCheck(pnode);
});
nLastCleanupNodes = GetTimeMillis();
}
DisconnectNodes();
NotifyNumConnectionsChanged();
}
}
void CConnman::WakeMessageHandler()
{
{
LOCK(mutexMsgProc);
fMsgProcWake = true;
}
condMsgProc.notify_one();
}
void CConnman::WakeSelect()
{
#ifdef USE_WAKEUP_PIPE
if (wakeupPipe[1] == -1) {
return;
}
char buf{0};
if (write(wakeupPipe[1], &buf, sizeof(buf)) != 1) {
LogPrint(BCLog::NET, "write to wakeupPipe failed\n");
}
#endif
wakeupSelectNeeded = false;
}
void CConnman::ThreadDNSAddressSeed()
{
FastRandomContext rng;
std::vector<std::string> seeds = Params().DNSSeeds();
Shuffle(seeds.begin(), seeds.end(), rng);
int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
int found = 0;
if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
// When -forcednsseed is provided, query all.
seeds_right_now = seeds.size();
} else if (addrman.size() == 0) {
// If we have no known peers, query all.
// This will occur on the first run, or if peers.dat has been
// deleted.
seeds_right_now = seeds.size();
}
// goal: only query DNS seed if address need is acute
// * If we have a reasonable number of peers in addrman, spend
// some time trying them first. This improves user privacy by
// creating fewer identifying DNS requests, reduces trust by
// giving seeds less influence on the network topology, and
// reduces traffic to the seeds.
// * When querying DNS seeds query a few at once, this ensures
// that we don't give DNS seeds the ability to eclipse nodes
// that query them.
// * If we continue having problems, eventually query all the
// DNS seeds, and if that fails too, also try the fixed seeds.
// (done in ThreadOpenConnections)
const std::chrono::seconds seeds_wait_time = (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
for (const std::string& seed : seeds) {
if (seeds_right_now == 0) {
seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
if (addrman.size() > 0) {
LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
std::chrono::seconds to_wait = seeds_wait_time;
while (to_wait.count() > 0) {
// if sleeping for the MANY_PEERS interval, wake up
// early to see if we have enough peers and can stop
// this thread entirely freeing up its resources
std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
if (!interruptNet.sleep_for(w)) return;
to_wait -= w;
int nRelevant = 0;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound && !pnode->m_masternode_probe_connection;
}
}
if (nRelevant >= 2) {
if (found > 0) {
LogPrintf("%d addresses found from DNS seeds\n", found);
LogPrintf("P2P peers available. Finished DNS seeding.\n");
} else {
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
}
return;
}
}
}
}
if (interruptNet) return;
// hold off on querying seeds if P2P network deactivated
if (!fNetworkActive) {
LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
do {
if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
} while (!fNetworkActive);
}
LogPrintf("Loading addresses from DNS seed %s\n", seed);
if (HaveNameProxy()) {
AddOneShot(seed);
} else {
std::vector<CNetAddr> vIPs;
std::vector<CAddress> vAdd;
ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
CNetAddr resolveSource;
if (!resolveSource.SetInternal(host)) {
continue;
}
unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
if (LookupHost(host, vIPs, nMaxIPs, true)) {
for (const CNetAddr& ip : vIPs) {
int nOneDay = 24*3600;
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
addr.nTime = GetTime() - 3*nOneDay - rng.randrange(4*nOneDay); // use a random age between 3 and 7 days old
vAdd.push_back(addr);
found++;
}
addrman.Add(vAdd, resolveSource);
} else {
// We now avoid directly using results from DNS Seeds which do not support service bit filtering,
// instead using them as a oneshot to get nodes with our desired service bits.
AddOneShot(seed);
}
}
--seeds_right_now;
}
LogPrintf("%d addresses found from DNS seeds\n", found);
}
void CConnman::DumpAddresses()
{
int64_t nStart = GetTimeMillis();
CAddrDB adb;
adb.Write(addrman);
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
}
void CConnman::ProcessOneShot()
{
std::string strDest;
{
LOCK(cs_vOneShots);
if (vOneShots.empty())
return;
strDest = vOneShots.front();
vOneShots.pop_front();
}
CAddress addr;
CSemaphoreGrant grant(*semOutbound, true);
if (grant) {
OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true);
}
}
bool CConnman::GetTryNewOutboundPeer()
{
return m_try_another_outbound_peer;
}
void CConnman::SetTryNewOutboundPeer(bool flag)
{
m_try_another_outbound_peer = flag;
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false");
}
// Return the number of peers we have over our outbound connection limit
// Exclude peers that are marked for disconnect, or are going to be
// disconnected soon (eg one-shots and feelers)
// Also exclude peers that haven't finished initial connection handshake yet
// (so that we don't decide we're over our desired connection limit, and then
// evict some peer that has finished the handshake)
int CConnman::GetExtraOutboundCount()
{
int nOutbound = 0;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
// don't count outbound masternodes
if (pnode->m_masternode_connection) {
continue;
}
if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected && !pnode->m_masternode_probe_connection) {
++nOutbound;
}
}
}
return std::max(nOutbound - m_max_outbound_full_relay - m_max_outbound_block_relay, 0);
}
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
{
// Connect to specific addresses
if (!connect.empty())
{
for (int64_t nLoop = 0;; nLoop++)
{
ProcessOneShot();
for (const std::string& strAddr : connect)
{
CAddress addr(CService(), NODE_NONE);
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true);
for (int i = 0; i < 10 && i < nLoop; i++)
{
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
}
}
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
}
}
// Initiate network connections
int64_t nStart = GetTime();
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
while (!interruptNet)
{
ProcessOneShot();
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
CSemaphoreGrant grant(*semOutbound);
if (interruptNet)
return;
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
// Note that we only do this if we started with an empty peers.dat,
// (in which case we will query DNS seeds immediately) *and* the DNS
// seeds have not returned any results.
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
static bool done = false;
if (!done) {
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
CNetAddr local;
local.SetInternal("fixedseeds");
addrman.Add(convertSeed6(Params().FixedSeeds()), local);
done = true;
}
}
//
// Choose an address to connect to based on most recently seen
//
CAddress addrConnect;
// Only connect out to one peer per network group (/16 for IPv4).
// This is only done for mainnet and testnet
int nOutboundFullRelay = 0;
int nOutboundBlockRelay = 0;
std::set<std::vector<unsigned char> > setConnected;
if (!Params().AllowMultipleAddressesFromGroup()) {
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (!pnode->fInbound && !pnode->m_masternode_connection && !pnode->m_manual_connection) {
// Netgroups for inbound and addnode peers are not excluded because our goal here
// is to not use multiple of our limited outbound slots on a single netgroup
// but inbound and addnode peers do not use our outbound slots. Inbound peers
// also have the added issue that they're attacker controlled and could be used
// to prevent us from connecting to particular hosts if we used them here.
setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap));
if (pnode->m_block_relay_only_peer) {
nOutboundBlockRelay++;
} else if (!pnode->fFeeler) {
nOutboundFullRelay++;
}
}
}
}
std::set<uint256> setConnectedMasternodes;
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
if (!verifiedProRegTxHash.IsNull()) {
setConnectedMasternodes.emplace(verifiedProRegTxHash);
}
}
}
// Feeler Connections
//
// Design goals:
// * Increase the number of connectable addresses in the tried table.
//
// Method:
// * Choose a random address from new and attempt to connect to it if we can connect
// successfully it is added to tried.
// * Start attempting feeler connections only after node finishes making outbound
// connections.
// * Only make a feeler connection once every few minutes.
//
bool fFeeler = false;
if (nOutboundFullRelay >= m_max_outbound_full_relay && nOutboundBlockRelay >= m_max_outbound_block_relay && !GetTryNewOutboundPeer()) {
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
if (nTime > nNextFeeler) {
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
fFeeler = true;
} else {
continue;
}
}
addrman.ResolveCollisions();
auto mnList = deterministicMNManager->GetListAtChainTip();
int64_t nANow = GetAdjustedTime();
int nTries = 0;
while (!interruptNet)
{
CAddrInfo addr = addrman.SelectTriedCollision();
// SelectTriedCollision returns an invalid address if it is empty.
if (!fFeeler || !addr.IsValid()) {
addr = addrman.Select(fFeeler);
}
auto dmn = mnList.GetMNByService(addr);
bool isMasternode = dmn != nullptr;
// Require outbound connections, other than feelers, to be to distinct network groups
if (!fFeeler && setConnected.count(addr.GetGroup(addrman.m_asmap))) {
break;
}
// if we selected an invalid address, restart
if (!addr.IsValid() || setConnected.count(addr.GetGroup(addrman.m_asmap)))
break;
// don't try to connect to masternodes that we already have a connection to (most likely inbound)
if (isMasternode && setConnectedMasternodes.count(dmn->proTxHash))
break;
// if we selected a local address, restart (local addresses are allowed in regtest and devnet)
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
if (!fAllowLocal && IsLocal(addrConnect)) {
break;
}
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
// already-connected network ranges, ...) before trying new addrman addresses.
nTries++;
if (nTries > 100)
break;
if (!IsReachable(addr))
continue;
// only consider very recently tried nodes after 30 failed attempts
if (nANow - addr.nLastTry < 600 && nTries < 30)
continue;
// for non-feelers, require all the services we'll want,
// for feelers, only require they be a full node (only because most
// SPV clients don't have a good address DB available)
if (!isMasternode && !fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
continue;
} else if (!isMasternode && fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
continue;
}
// do not allow non-default ports, unless after 50 invalid addresses selected already
if ((!isMasternode || !Params().AllowMultiplePorts()) && addr.GetPort() != Params().GetDefaultPort() && addr.GetPort() != GetListenPort() && nTries < 50)
continue;
addrConnect = addr;
break;
}
if (addrConnect.IsValid()) {
if (fFeeler) {
// Add small amount of random noise before connection to avoid synchronization.
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
return;
if (fLogIPs) {
LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
} else {
LogPrint(BCLog::NET, "Making feeler connection\n");
}
}
// Open this connection as block-relay-only if we're already at our
// full-relay capacity, but not yet at our block-relay peer limit.
// (It should not be possible for fFeeler to be set if we're not
// also at our block-relay peer limit, but check against that as
// well for sanity.)
bool block_relay_only = nOutboundBlockRelay < m_max_outbound_block_relay && !fFeeler && nOutboundFullRelay >= m_max_outbound_full_relay;
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler, false, block_relay_only);
}
}
}
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
{
std::vector<AddedNodeInfo> ret;
std::list<std::string> lAddresses(0);
{
LOCK(cs_vAddedNodes);
ret.reserve(vAddedNodes.size());
std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses));
}
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
std::map<CService, bool> mapConnected;
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
{
LOCK(cs_vNodes);
for (const CNode* pnode : vNodes) {
if (pnode->addr.IsValid()) {
mapConnected[pnode->addr] = pnode->fInbound;
}
std::string addrName = pnode->GetAddrName();
if (!addrName.empty()) {
mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr));
}
}
}
for (const std::string& strAddNode : lAddresses) {
CService service(LookupNumeric(strAddNode, Params().GetDefaultPort()));
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
if (service.IsValid()) {
// strAddNode is an IP:port
auto it = mapConnected.find(service);
if (it != mapConnected.end()) {
addedNode.resolvedAddress = service;
addedNode.fConnected = true;
addedNode.fInbound = it->second;
}
} else {
// strAddNode is a name
auto it = mapConnectedByName.find(strAddNode);
if (it != mapConnectedByName.end()) {
addedNode.resolvedAddress = it->second.second;
addedNode.fConnected = true;
addedNode.fInbound = it->second.first;
}
}
ret.emplace_back(std::move(addedNode));
}
return ret;
}
void CConnman::ThreadOpenAddedConnections()
{
while (true)
{
CSemaphoreGrant grant(*semAddnode);
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
bool tried = false;
for (const AddedNodeInfo& info : vInfo) {
if (!info.fConnected) {
if (!grant.TryAcquire()) {
// If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
// the addednodeinfo state might change.
break;
}
tried = true;
CAddress addr(CService(), NODE_NONE);
// KNST should be false
OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true /* ,false*/);
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
return;
}
}
// Retry every 60 seconds if a connection was attempted, otherwise two seconds
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
return;
}
}
void CConnman::ThreadOpenMasternodeConnections()
{
// Connecting to specific addresses, no masternode connections available
if (gArgs.IsArgSet("-connect") && gArgs.GetArgs("-connect").size() > 0)
return;
auto& chainParams = Params();
bool didConnect = false;
while (!interruptNet)
{
auto sleepTime = std::chrono::milliseconds(1000);
if (didConnect) {
sleepTime = std::chrono::milliseconds(100);
}
if (!interruptNet.sleep_for(sleepTime))
return;
didConnect = false;
if (!fNetworkActive || !::masternodeSync->IsBlockchainSynced())
continue;
std::set<CService> connectedNodes;
std::map<uint256 /*proTxHash*/, bool /*fInbound*/> connectedProRegTxHashes;
ForEachNode([&](const CNode* pnode) {
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
connectedNodes.emplace(pnode->addr);
if (!verifiedProRegTxHash.IsNull()) {
connectedProRegTxHashes.emplace(verifiedProRegTxHash, pnode->fInbound);
}
});
auto mnList = deterministicMNManager->GetListAtChainTip();
if (interruptNet)
return;
int64_t nANow = GetAdjustedTime();
constexpr const auto &_func_ = __func__;
// NOTE: Process only one pending masternode at a time
MasternodeProbeConn isProbe = MasternodeProbeConn::IsNotConnection;
const auto getPendingQuorumNodes = [&]() {
LockAssertion lock(cs_vPendingMasternodes);
std::vector<CDeterministicMNCPtr> ret;
for (const auto& group : masternodeQuorumNodes) {
for (const auto& proRegTxHash : group.second) {
auto dmn = mnList.GetMN(proRegTxHash);
if (!dmn) {
continue;
}
const auto& addr2 = dmn->pdmnState->addr;
if (connectedNodes.count(addr2) && !connectedProRegTxHashes.count(proRegTxHash)) {
// we probably connected to it before it became a masternode
// or maybe we are still waiting for mnauth
(void)ForNode(addr2, [&](CNode* pnode) {
if (pnode->nTimeFirstMessageReceived != 0 && GetSystemTimeInSeconds() - pnode->nTimeFirstMessageReceived > 5) {
// clearly not expecting mnauth to take that long even if it wasn't the first message
// we received (as it should normally), disconnect
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- dropping non-mnauth connection to %s, service=%s\n", _func_, proRegTxHash.ToString(), addr2.ToString(false));
pnode->fDisconnect = true;
return true;
}
return false;
});
// either way - it's not ready, skip it for now
continue;
}
if (!connectedNodes.count(addr2) && !IsMasternodeOrDisconnectRequested(addr2) && !connectedProRegTxHashes.count(proRegTxHash)) {
int64_t lastAttempt = mmetaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt();
// back off trying connecting to an address if we already tried recently
if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) {
continue;
}
ret.emplace_back(dmn);
}
}
}
return ret;
};
const auto getPendingProbes = [&]() {
LockAssertion lock(cs_vPendingMasternodes);
std::vector<CDeterministicMNCPtr> ret;
for (auto it = masternodePendingProbes.begin(); it != masternodePendingProbes.end(); ) {
auto dmn = mnList.GetMN(*it);
if (!dmn) {
it = masternodePendingProbes.erase(it);
continue;
}
bool connectedAndOutbound = connectedProRegTxHashes.count(dmn->proTxHash) && !connectedProRegTxHashes[dmn->proTxHash];
if (connectedAndOutbound) {
// we already have an outbound connection to this MN so there is no theed to probe it again
mmetaman.GetMetaInfo(dmn->proTxHash)->SetLastOutboundSuccess(nANow);
it = masternodePendingProbes.erase(it);
continue;
}
++it;
int64_t lastAttempt = mmetaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt();
// back off trying connecting to an address if we already tried recently
if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) {
continue;
}
ret.emplace_back(dmn);
}
return ret;
};
auto getConnectToDmn = [&]() -> CDeterministicMNCPtr {
// don't hold lock while calling OpenMasternodeConnection as cs_main is locked deep inside
LOCK2(cs_vNodes, cs_vPendingMasternodes);
if (!vPendingMasternodes.empty()) {
auto dmn = mnList.GetValidMN(vPendingMasternodes.front());
vPendingMasternodes.erase(vPendingMasternodes.begin());
if (dmn && !connectedNodes.count(dmn->pdmnState->addr) && !IsMasternodeOrDisconnectRequested(dmn->pdmnState->addr)) {
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening pending masternode connection to %s, service=%s\n", _func_, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString(false));
return dmn;
}
}
if (const auto pending = getPendingQuorumNodes(); !pending.empty()) {
// not-null
auto dmn = pending[GetRand(pending.size())];
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening quorum connection to %s, service=%s\n",
_func_, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString(false));
return dmn;
}
if (const auto pending = getPendingProbes(); !pending.empty()) {
// not-null
auto dmn = pending[GetRand(pending.size())];
masternodePendingProbes.erase(dmn->proTxHash);
isProbe = MasternodeProbeConn::IsConnection;
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- probing masternode %s, service=%s\n", _func_, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString(false));
return dmn;
}
return nullptr;
};
CDeterministicMNCPtr connectToDmn = getConnectToDmn();
if (connectToDmn == nullptr) {
continue;
}
didConnect = true;
mmetaman.GetMetaInfo(connectToDmn->proTxHash)->SetLastOutboundAttempt(nANow);
OpenMasternodeConnection(CAddress(connectToDmn->pdmnState->addr, NODE_NETWORK), isProbe);
// should be in the list now if connection was opened
bool connected = ForNode(connectToDmn->pdmnState->addr, CConnman::AllNodes, [&](CNode* pnode) {
if (pnode->fDisconnect) {
return false;
}
return true;
});
if (!connected) {
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connection failed for masternode %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false));
// Will take a few consequent failed attempts to PoSe-punish a MN.
if (mmetaman.GetMetaInfo(connectToDmn->proTxHash)->OutboundFailedTooManyTimes()) {
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- failed to connect to masternode %s too many times\n", __func__, connectToDmn->proTxHash.ToString());
}
}
}
}
// if successful, this moves the passed grant to the constructed node
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection, bool block_relay_only, MasternodeConn masternode_connection, MasternodeProbeConn masternode_probe_connection)
{
//
// Initiate outbound network connection
//
if (interruptNet) {
return;
}
if (!fNetworkActive) {
return;
}
auto getIpStr = [&]() {
if (fLogIPs) {
return addrConnect.ToString(false);
} else {
return std::string("new peer");
}
};
if (!pszDest) {
// banned, discouraged or exact match?
if ((m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect))) || FindNode(addrConnect.ToStringIPPort()))
return;
// local and not a connection to itself?
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
if (!fAllowLocal && IsLocal(addrConnect))
return;
// Search for IP:PORT match:
// - if multiple ports for the same IP are allowed,
// - for probe connections
// Search for IP-only match otherwise
bool searchIPPort = Params().AllowMultiplePorts() || masternode_probe_connection == MasternodeProbeConn::IsConnection;
bool skip = searchIPPort ?
FindNode(static_cast<CService>(addrConnect)) :
FindNode(static_cast<CNetAddr>(addrConnect));
if (skip) {
LogPrintf("CConnman::%s -- Failed to open new connection to %s, already connected\n", __func__, getIpStr());
return;
}
} else if (FindNode(std::string(pszDest)))
return;
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connecting to %s\n", __func__, getIpStr());
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection, block_relay_only);
if (!pnode) {
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- ConnectNode failed for %s\n", __func__, getIpStr());
return;
}
{
LOCK(pnode->cs_hSocket);
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- successfully connected to %s, sock=%d, peer=%d\n", __func__, getIpStr(), pnode->hSocket, pnode->GetId());
}
if (grantOutbound)
grantOutbound->MoveTo(pnode->grantOutbound);
if (fOneShot)
pnode->fOneShot = true;
if (fFeeler)
pnode->fFeeler = true;
if (manual_connection)
pnode->m_manual_connection = true;
if (masternode_connection == MasternodeConn::IsConnection)
pnode->m_masternode_connection = true;
if (masternode_probe_connection == MasternodeProbeConn::IsConnection)
pnode->m_masternode_probe_connection = true;
{
LOCK2(cs_vNodes, pnode->cs_hSocket);
mapSocketToNode.emplace(pnode->hSocket, pnode);
}
m_msgproc->InitializeNode(pnode);
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
RegisterEvents(pnode);
WakeSelect();
}
}
void CConnman::OpenMasternodeConnection(const CAddress &addrConnect, MasternodeProbeConn probe) {
OpenNetworkConnection(addrConnect, false, nullptr, nullptr, false, false, false, false, MasternodeConn::IsConnection, probe);
}
void CConnman::ThreadMessageHandler()
{
int64_t nLastSendMessagesTimeMasternodes = 0;
while (!flagInterruptMsgProc)
{
std::vector<CNode*> vNodesCopy = CopyNodeVector();
bool fMoreWork = false;
bool fSkipSendMessagesForMasternodes = true;
if (GetTimeMillis() - nLastSendMessagesTimeMasternodes >= 100) {
fSkipSendMessagesForMasternodes = false;
nLastSendMessagesTimeMasternodes = GetTimeMillis();
}
for (CNode* pnode : vNodesCopy)
{
if (pnode->fDisconnect)
continue;
// Receive messages
bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
if (flagInterruptMsgProc)
return;
// Send messages
if (!fSkipSendMessagesForMasternodes || !pnode->m_masternode_connection) {
LOCK(pnode->cs_sendProcessing);
m_msgproc->SendMessages(pnode);
}
if (flagInterruptMsgProc)
return;
}
ReleaseNodeVector(vNodesCopy);
WAIT_LOCK(mutexMsgProc, lock);
if (!fMoreWork) {
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
}
fMsgProcWake = false;
}
}
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
{
int nOne = 1;
// Create socket for listening for incoming connections
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
{
strError = strprintf(Untranslated("Error: Bind address family for %s not supported"), addrBind.ToString());
LogPrintf("%s\n", strError.original);
return false;
}
std::unique_ptr<Sock> sock = CreateSock(addrBind);
if (!sock) {
strError = strprintf(Untranslated("Error: Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
return false;
}
// Allow binding if the port is still in TIME_WAIT state after
// the program was closed and restarted.
setsockopt(sock->Get(), SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int));
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
// and enable it by default or not. Try to enable it, if possible.
if (addrBind.IsIPv6()) {
#ifdef IPV6_V6ONLY
setsockopt(sock->Get(), IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int));
#endif
#ifdef WIN32
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
setsockopt(sock->Get(), IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
#endif
}
if (::bind(sock->Get(), (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
if (nErr == WSAEADDRINUSE)
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), PACKAGE_NAME);
else
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
LogPrintf("%s\n", strError.original);
return false;
}
LogPrintf("Bound to %s\n", addrBind.ToString());
// Listen for incoming connections
if (listen(sock->Get(), SOMAXCONN) == SOCKET_ERROR)
{
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
return false;
}
#ifdef USE_KQUEUE
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
struct kevent event;
EV_SET(&event, sock->Get(), EVFILT_READ, EV_ADD, 0, 0, nullptr);
if (kevent(kqueuefd, &event, 1, nullptr, 0, nullptr) != 0) {
strError = strprintf(_("Error: failed to add socket to kqueuefd (kevent returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
return false;
}
}
#endif
#ifdef USE_EPOLL
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
epoll_event event;
event.data.fd = sock->Get();
event.events = EPOLLIN;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, sock->Get(), &event) != 0) {
strError = strprintf(_("Error: failed to add socket to epollfd (epoll_ctl returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError.original);
return false;
}
}
#endif
vhListenSocket.push_back(ListenSocket(sock->Release(), permissions));
if (addrBind.IsRoutable() && fDiscover && (permissions & PF_NOBAN) == 0)
AddLocal(addrBind, LOCAL_BIND);
return true;
}
void Discover()
{
if (!fDiscover)
return;
#ifdef WIN32
// Get local host IP
char pszHostName[256] = "";
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
{
std::vector<CNetAddr> vaddr;
if (LookupHost(pszHostName, vaddr, 0, true))
{
for (const CNetAddr &addr : vaddr)
{
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
}
}
}
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
// Get local host ip
struct ifaddrs* myaddrs;
if (getifaddrs(&myaddrs) == 0)
{
for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
{
if (ifa->ifa_addr == nullptr) continue;
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
if (ifa->ifa_addr->sa_family == AF_INET)
{
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
CNetAddr addr(s4->sin_addr);
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
}
else if (ifa->ifa_addr->sa_family == AF_INET6)
{
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
CNetAddr addr(s6->sin6_addr);
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
}
}
freeifaddrs(myaddrs);
}
#endif
}
void CConnman::SetNetworkActive(bool active)
{
LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active);
if (fNetworkActive == active) {
return;
}
fNetworkActive = active;
// Always call the Reset() if the network gets enabled/disabled to make sure the sync process
// gets a reset if its outdated..
::masternodeSync->Reset();
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
}
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) :
addrman(Params().AllowMultiplePorts()),
nSeed0(nSeed0In), nSeed1(nSeed1In)
{
SetTryNewOutboundPeer(false);
Options connOptions;
Init(connOptions);
}
NodeId CConnman::GetNewNodeId()
{
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
}
bool CConnman::Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions) {
if (!(flags & BF_EXPLICIT) && !IsReachable(addr))
return false;
bilingual_str strError;
if (!BindListenPort(addr, strError, permissions)) {
if ((flags & BF_REPORT_ERROR) && clientInterface) {
clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
}
return false;
}
return true;
}
bool CConnman::InitBinds(const std::vector<CService>& binds, const std::vector<NetWhitebindPermissions>& whiteBinds)
{
bool fBound = false;
for (const auto& addrBind : binds) {
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR), NetPermissionFlags::PF_NONE);
}
for (const auto& addrBind : whiteBinds) {
fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR), addrBind.m_flags);
}
if (binds.empty() && whiteBinds.empty()) {
struct in_addr inaddr_any;
inaddr_any.s_addr = INADDR_ANY;
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::PF_NONE);
fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::PF_NONE);
}
return fBound;
}
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
{
Init(connOptions);
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv = 0;
}
{
LOCK(cs_totalBytesSent);
nTotalBytesSent = 0;
nMaxOutboundTotalBytesSentInCycle = 0;
nMaxOutboundCycleStartTime = 0s;
}
#ifdef USE_KQUEUE
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
kqueuefd = kqueue();
if (kqueuefd == -1) {
LogPrintf("kqueue failed\n");
return false;
}
}
#endif
#ifdef USE_EPOLL
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
epollfd = epoll_create1(0);
if (epollfd == -1) {
LogPrintf("epoll_create1 failed\n");
return false;
}
}
#endif
if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Failed to listen on any port. Use -listen=0 if you want this."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
for (const auto& strDest : connOptions.vSeedNodes) {
AddOneShot(strDest);
}
if (clientInterface) {
clientInterface->InitMessage(_("Loading P2P addresses...").translated);
}
// Load addresses from peers.dat
int64_t nStart = GetTimeMillis();
{
CAddrDB adb;
if (adb.Read(addrman))
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
else {
addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
LogPrintf("Recreating peers.dat\n");
DumpAddresses();
}
}
uiInterface.InitMessage(_("Starting network threads...").translated);
fAddressesInitialized = true;
if (semOutbound == nullptr) {
// initialize semaphore
semOutbound = std::make_unique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
}
if (semAddnode == nullptr) {
// initialize semaphore
semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
}
//
// Start threads
//
assert(m_msgproc);
InterruptSocks5(false);
interruptNet.reset();
flagInterruptMsgProc = false;
{
LOCK(mutexMsgProc);
fMsgProcWake = false;
}
#ifdef USE_WAKEUP_PIPE
if (pipe(wakeupPipe) != 0) {
wakeupPipe[0] = wakeupPipe[1] = -1;
LogPrint(BCLog::NET, "pipe() for wakeupPipe failed\n");
} else {
int fFlags = fcntl(wakeupPipe[0], F_GETFL, 0);
if (fcntl(wakeupPipe[0], F_SETFL, fFlags | O_NONBLOCK) == -1) {
LogPrint(BCLog::NET, "fcntl for O_NONBLOCK on wakeupPipe failed\n");
}
fFlags = fcntl(wakeupPipe[1], F_GETFL, 0);
if (fcntl(wakeupPipe[1], F_SETFL, fFlags | O_NONBLOCK) == -1) {
LogPrint(BCLog::NET, "fcntl for O_NONBLOCK on wakeupPipe failed\n");
}
#ifdef USE_KQUEUE
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
struct kevent event;
EV_SET(&event, wakeupPipe[0], EVFILT_READ, EV_ADD, 0, 0, nullptr);
int r = kevent(kqueuefd, &event, 1, nullptr, 0, nullptr);
if (r != 0) {
LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__,
kqueuefd, EV_ADD, wakeupPipe[0], NetworkErrorString(WSAGetLastError()));
return false;
}
}
#endif
#ifdef USE_EPOLL
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
epoll_event event;
event.events = EPOLLIN;
event.data.fd = wakeupPipe[0];
int r = epoll_ctl(epollfd, EPOLL_CTL_ADD, wakeupPipe[0], &event);
if (r != 0) {
LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__,
epollfd, EPOLL_CTL_ADD, wakeupPipe[0], NetworkErrorString(WSAGetLastError()));
return false;
}
}
#endif
}
#endif
// Send and receive from sockets, accept connections
threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
if (!gArgs.GetBoolArg("-dnsseed", true))
LogPrintf("DNS seeding disabled\n");
else
threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this)));
// Initiate outbound connections from -addnode
threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this)));
if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
if (clientInterface) {
clientInterface->ThreadSafeMessageBox(
_("Cannot provide specific connections and have addrman find outgoing connections at the same."),
"", CClientUIInterface::MSG_ERROR);
}
return false;
}
if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty())
threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing)));
// Initiate masternode connections
threadOpenMasternodeConnections = std::thread(&TraceThread<std::function<void()> >, "mncon", std::function<void()>(std::bind(&CConnman::ThreadOpenMasternodeConnections, this)));
// Process messages
threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this)));
// Dump network addresses
scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
return true;
}
class CNetCleanup
{
public:
CNetCleanup() {}
~CNetCleanup()
{
#ifdef WIN32
// Shutdown Windows Sockets
WSACleanup();
#endif
}
};
static CNetCleanup instance_of_cnetcleanup;
void CExplicitNetCleanup::callCleanup()
{
// Explicit call to destructor of CNetCleanup because it's not implicitly called
// when the wallet is restarted from within the wallet itself.
CNetCleanup *tmp = new CNetCleanup();
delete tmp; // Stroustrup's gonna kill me for that
}
void CConnman::Interrupt()
{
{
LOCK(mutexMsgProc);
flagInterruptMsgProc = true;
}
condMsgProc.notify_all();
interruptNet();
InterruptSocks5(true);
if (semOutbound) {
for (int i=0; i<m_max_outbound; i++) {
semOutbound->post();
}
}
if (semAddnode) {
for (int i=0; i<nMaxAddnode; i++) {
semAddnode->post();
}
}
}
void CConnman::Stop()
{
if (threadMessageHandler.joinable())
threadMessageHandler.join();
if (threadOpenMasternodeConnections.joinable())
threadOpenMasternodeConnections.join();
if (threadOpenConnections.joinable())
threadOpenConnections.join();
if (threadOpenAddedConnections.joinable())
threadOpenAddedConnections.join();
if (threadDNSAddressSeed.joinable())
threadDNSAddressSeed.join();
if (threadSocketHandler.joinable())
threadSocketHandler.join();
if (fAddressesInitialized)
{
DumpAddresses();
fAddressesInitialized = false;
}
{
LOCK(cs_vNodes);
// Close sockets
for (CNode *pnode : vNodes)
pnode->CloseSocketDisconnect(this);
}
for (ListenSocket& hListenSocket : vhListenSocket)
if (hListenSocket.socket != INVALID_SOCKET) {
#ifdef USE_KQUEUE
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
struct kevent event;
EV_SET(&event, hListenSocket.socket, EVFILT_READ, EV_DELETE, 0, 0, nullptr);
kevent(kqueuefd, &event, 1, nullptr, 0, nullptr);
}
#endif
#ifdef USE_EPOLL
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
epoll_ctl(epollfd, EPOLL_CTL_DEL, hListenSocket.socket, nullptr);
}
#endif
if (!CloseSocket(hListenSocket.socket))
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
}
// clean up some globals (to help leak detection)
std::vector<CNode*> nodes;
WITH_LOCK(cs_vNodes, nodes.swap(vNodes));
for (CNode *pnode : nodes) {
DeleteNode(pnode);
}
for (CNode *pnode : vNodesDisconnected) {
DeleteNode(pnode);
}
mapSocketToNode.clear();
{
LOCK(cs_vNodes);
mapReceivableNodes.clear();
}
{
LOCK(cs_mapNodesWithDataToSend);
mapNodesWithDataToSend.clear();
}
vNodesDisconnected.clear();
vhListenSocket.clear();
semOutbound.reset();
semAddnode.reset();
#ifdef USE_KQUEUE
if (socketEventsMode == SOCKETEVENTS_KQUEUE && kqueuefd != -1) {
#ifdef USE_WAKEUP_PIPE
struct kevent event;
EV_SET(&event, wakeupPipe[0], EVFILT_READ, EV_DELETE, 0, 0, nullptr);
kevent(kqueuefd, &event, 1, nullptr, 0, nullptr);
#endif
close(kqueuefd);
}
kqueuefd = -1;
#endif
#ifdef USE_EPOLL
if (socketEventsMode == SOCKETEVENTS_EPOLL && epollfd != -1) {
#ifdef USE_WAKEUP_PIPE
epoll_ctl(epollfd, EPOLL_CTL_DEL, wakeupPipe[0], nullptr);
#endif
close(epollfd);
}
epollfd = -1;
#endif
#ifdef USE_WAKEUP_PIPE
if (wakeupPipe[0] != -1) close(wakeupPipe[0]);
if (wakeupPipe[1] != -1) close(wakeupPipe[1]);
wakeupPipe[0] = wakeupPipe[1] = -1;
#endif
}
void CConnman::DeleteNode(CNode* pnode)
{
assert(pnode);
bool fUpdateConnectionTime = false;
m_msgproc->FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
if(fUpdateConnectionTime) {
addrman.Connected(pnode->addr);
}
delete pnode;
}
CConnman::~CConnman()
{
Interrupt();
Stop();
}
size_t CConnman::GetAddressCount() const
{
return addrman.size();
}
void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
{
addrman.SetServices(addr, nServices);
}
void CConnman::MarkAddressGood(const CAddress& addr)
{
addrman.Good(addr);
}
void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
{
addrman.Add(vAddr, addrFrom, nTimePenalty);
}
std::vector<CAddress> CConnman::GetAddresses()
{
return addrman.GetAddr();
}
bool CConnman::AddNode(const std::string& strNode)
{
LOCK(cs_vAddedNodes);
for (const std::string& it : vAddedNodes) {
if (strNode == it) return false;
}
vAddedNodes.push_back(strNode);
return true;
}
bool CConnman::RemoveAddedNode(const std::string& strNode)
{
LOCK(cs_vAddedNodes);
for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
if (strNode == *it) {
vAddedNodes.erase(it);
return true;
}
}
return false;
}
bool CConnman::AddPendingMasternode(const uint256& proTxHash)
{
LOCK(cs_vPendingMasternodes);
if (std::find(vPendingMasternodes.begin(), vPendingMasternodes.end(), proTxHash) != vPendingMasternodes.end()) {
return false;
}
vPendingMasternodes.push_back(proTxHash);
return true;
}
void CConnman::SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes)
{
LOCK(cs_vPendingMasternodes);
auto it = masternodeQuorumNodes.emplace(std::make_pair(llmqType, quorumHash), proTxHashes);
if (!it.second) {
it.first->second = proTxHashes;
}
}
void CConnman::SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes)
{
{
LOCK(cs_vPendingMasternodes);
auto it = masternodeQuorumRelayMembers.emplace(std::make_pair(llmqType, quorumHash), proTxHashes);
if (!it.second) {
it.first->second = proTxHashes;
}
}
// Update existing connections
ForEachNode([&](CNode* pnode) {
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
if (!verifiedProRegTxHash.IsNull() && !pnode->m_masternode_iqr_connection && IsMasternodeQuorumRelayMember(verifiedProRegTxHash)) {
// Tell our peer that we're interested in plain LLMQ recovered signatures.
// Otherwise the peer would only announce/send messages resulting from QRECSIG,
// e.g. InstantSend locks or ChainLocks. SPV and regular full nodes should not send
// this message as they are usually only interested in the higher level messages.
const CNetMsgMaker msgMaker(pnode->GetSendVersion());
PushMessage(pnode, msgMaker.Make(NetMsgType::QSENDRECSIGS, true));
pnode->m_masternode_iqr_connection = true;
}
});
}
bool CConnman::HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash)
{
LOCK(cs_vPendingMasternodes);
return masternodeQuorumNodes.count(std::make_pair(llmqType, quorumHash));
}
std::set<uint256> CConnman::GetMasternodeQuorums(Consensus::LLMQType llmqType)
{
LOCK(cs_vPendingMasternodes);
std::set<uint256> result;
for (const auto& p : masternodeQuorumNodes) {
if (p.first.first != llmqType) {
continue;
}
result.emplace(p.first.second);
}
return result;
}
std::set<NodeId> CConnman::GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const
{
LOCK2(cs_vNodes, cs_vPendingMasternodes);
auto it = masternodeQuorumNodes.find(std::make_pair(llmqType, quorumHash));
if (it == masternodeQuorumNodes.end()) {
return {};
}
const auto& proRegTxHashes = it->second;
std::set<NodeId> nodes;
for (const auto pnode : vNodes) {
if (pnode->fDisconnect) {
continue;
}
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
if (!pnode->qwatch && (verifiedProRegTxHash.IsNull() || !proRegTxHashes.count(verifiedProRegTxHash))) {
continue;
}
nodes.emplace(pnode->GetId());
}
return nodes;
}
void CConnman::RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash)
{
LOCK(cs_vPendingMasternodes);
masternodeQuorumNodes.erase(std::make_pair(llmqType, quorumHash));
masternodeQuorumRelayMembers.erase(std::make_pair(llmqType, quorumHash));
}
bool CConnman::IsMasternodeQuorumNode(const CNode* pnode)
{
// Let's see if this is an outgoing connection to an address that is known to be a masternode
// We however only need to know this if the node did not authenticate itself as a MN yet
uint256 assumedProTxHash;
if (pnode->GetVerifiedProRegTxHash().IsNull() && !pnode->fInbound) {
auto mnList = deterministicMNManager->GetListAtChainTip();
auto dmn = mnList.GetMNByService(pnode->addr);
if (dmn == nullptr) {
// This is definitely not a masternode
return false;
}
assumedProTxHash = dmn->proTxHash;
}
LOCK(cs_vPendingMasternodes);
for (const auto& p : masternodeQuorumNodes) {
if (!pnode->GetVerifiedProRegTxHash().IsNull()) {
if (p.second.count(pnode->GetVerifiedProRegTxHash())) {
return true;
}
} else if (!assumedProTxHash.IsNull()) {
if (p.second.count(assumedProTxHash)) {
return true;
}
}
}
return false;
}
bool CConnman::IsMasternodeQuorumRelayMember(const uint256& protxHash)
{
if (protxHash.IsNull()) {
return false;
}
LOCK(cs_vPendingMasternodes);
for (const auto& p : masternodeQuorumRelayMembers) {
if (p.second.count(protxHash)) {
return true;
}
}
return false;
}
void CConnman::AddPendingProbeConnections(const std::set<uint256> &proTxHashes)
{
LOCK(cs_vPendingMasternodes);
masternodePendingProbes.insert(proTxHashes.begin(), proTxHashes.end());
}
size_t CConnman::GetNodeCount(NumConnections flags)
{
LOCK(cs_vNodes);
int nNum = 0;
for (const auto& pnode : vNodes) {
if (pnode->fDisconnect) {
continue;
}
if ((flags & CONNECTIONS_VERIFIED) && pnode->GetVerifiedProRegTxHash().IsNull()) {
continue;
}
if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
nNum++;
} else if (flags == CONNECTIONS_VERIFIED) {
nNum++;
}
}
return nNum;
}
size_t CConnman::GetMaxOutboundNodeCount()
{
return m_max_outbound;
}
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
{
vstats.clear();
LOCK(cs_vNodes);
vstats.reserve(vNodes.size());
for (CNode* pnode : vNodes) {
if (pnode->fDisconnect) {
continue;
}
vstats.emplace_back();
pnode->copyStats(vstats.back(), addrman.m_asmap);
}
}
bool CConnman::DisconnectNode(const std::string& strNode)
{
LOCK(cs_vNodes);
if (CNode* pnode = FindNode(strNode)) {
pnode->fDisconnect = true;
return true;
}
return false;
}
bool CConnman::DisconnectNode(const CSubNet& subnet)
{
bool disconnected = false;
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (subnet.Match(pnode->addr)) {
pnode->fDisconnect = true;
disconnected = true;
}
}
return disconnected;
}
bool CConnman::DisconnectNode(const CNetAddr& addr)
{
return DisconnectNode(CSubNet(addr));
}
bool CConnman::DisconnectNode(NodeId id)
{
LOCK(cs_vNodes);
for(CNode* pnode : vNodes) {
if (id == pnode->GetId()) {
pnode->fDisconnect = true;
return true;
}
}
return false;
}
void CConnman::RelayTransaction(const CTransaction& tx)
{
uint256 hash = tx.GetHash();
int nInv = MSG_TX;
if (CCoinJoin::GetDSTX(hash)) {
nInv = MSG_DSTX;
}
CInv inv(nInv, hash);
RelayInv(inv);
}
void CConnman::RelayInv(CInv &inv, const int minProtoVersion) {
LOCK(cs_vNodes);
for (const auto& pnode : vNodes) {
if (pnode->nVersion < minProtoVersion || !pnode->CanRelay())
continue;
pnode->PushInventory(inv);
}
}
void CConnman::RelayInvFiltered(CInv &inv, const CTransaction& relatedTx, const int minProtoVersion)
{
LOCK(cs_vNodes);
for (const auto& pnode : vNodes) {
if (pnode->nVersion < minProtoVersion || !pnode->CanRelay() || pnode->m_block_relay_only_peer) {
continue;
}
{
LOCK(pnode->m_tx_relay->cs_filter);
if (!pnode->m_tx_relay->fRelayTxes) {
continue;
}
if (pnode->m_tx_relay->pfilter && !pnode->m_tx_relay->pfilter->IsRelevantAndUpdate(relatedTx)) {
continue;
}
}
pnode->PushInventory(inv);
}
}
void CConnman::RelayInvFiltered(CInv &inv, const uint256& relatedTxHash, const int minProtoVersion)
{
LOCK(cs_vNodes);
for (const auto& pnode : vNodes) {
if (pnode->nVersion < minProtoVersion || !pnode->CanRelay() || pnode->m_block_relay_only_peer) {
continue;
}
{
LOCK(pnode->m_tx_relay->cs_filter);
if (!pnode->m_tx_relay->fRelayTxes) {
continue;
}
if (pnode->m_tx_relay->pfilter && !pnode->m_tx_relay->pfilter->contains(relatedTxHash)) {
continue;
}
}
pnode->PushInventory(inv);
}
}
void CConnman::RecordBytesRecv(uint64_t bytes)
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv += bytes;
statsClient.count("bandwidth.bytesReceived", bytes, 0.1f);
statsClient.gauge("bandwidth.totalBytesReceived", nTotalBytesRecv, 0.01f);
}
void CConnman::RecordBytesSent(uint64_t bytes)
{
LOCK(cs_totalBytesSent);
nTotalBytesSent += bytes;
statsClient.count("bandwidth.bytesSent", bytes, 0.01f);
statsClient.gauge("bandwidth.totalBytesSent", nTotalBytesSent, 0.01f);
const auto now = GetTime<std::chrono::seconds>();
if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
{
// timeframe expired, reset cycle
nMaxOutboundCycleStartTime = now;
nMaxOutboundTotalBytesSentInCycle = 0;
}
// TODO, exclude whitebind peers
nMaxOutboundTotalBytesSentInCycle += bytes;
}
uint64_t CConnman::GetMaxOutboundTarget()
{
LOCK(cs_totalBytesSent);
return nMaxOutboundLimit;
}
std::chrono::seconds CConnman::GetMaxOutboundTimeframe()
{
return MAX_UPLOAD_TIMEFRAME;
}
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle()
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0)
return 0s;
if (nMaxOutboundCycleStartTime.count() == 0)
return MAX_UPLOAD_TIMEFRAME;
const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
const auto now = GetTime<std::chrono::seconds>();
return (cycleEndTime < now) ? 0s : cycleEndTime - now;
}
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0)
return false;
if (historicalBlockServingLimit)
{
// keep a large enough buffer to at least relay each block once
const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MaxBlockSize(fDIP0001ActiveAtTip);
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
return true;
}
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
return true;
return false;
}
uint64_t CConnman::GetOutboundTargetBytesLeft()
{
LOCK(cs_totalBytesSent);
if (nMaxOutboundLimit == 0)
return 0;
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
}
uint64_t CConnman::GetTotalBytesRecv()
{
LOCK(cs_totalBytesRecv);
return nTotalBytesRecv;
}
uint64_t CConnman::GetTotalBytesSent()
{
LOCK(cs_totalBytesSent);
return nTotalBytesSent;
}
ServiceFlags CConnman::GetLocalServices() const
{
return nLocalServices;
}
void CConnman::SetBestHeight(int height)
{
nBestHeight.store(height, std::memory_order_release);
}
int CConnman::GetBestHeight() const
{
return nBestHeight.load(std::memory_order_acquire);
}
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress& addrBindIn, const std::string& addrNameIn, bool fInboundIn, bool block_relay_only)
: nTimeConnected(GetSystemTimeInSeconds()),
addr(addrIn),
addrBind(addrBindIn),
fInbound(fInboundIn),
nKeyedNetGroup(nKeyedNetGroupIn),
addrKnown(5000, 0.001),
m_block_relay_only_peer(block_relay_only),
id(idIn),
nLocalHostNonce(nLocalHostNonceIn),
nLocalServices(nLocalServicesIn),
nMyStartingHeight(nMyStartingHeightIn)
{
hSocket = hSocketIn;
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
hashContinue = uint256();
m_tx_relay = std::make_unique<TxRelay>();
for (const std::string &msg : getAllNetMessageTypes())
mapRecvBytesPerMsgCmd[msg] = 0;
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
if (fLogIPs) {
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
} else {
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
}
m_deserializer = std::make_unique<V1TransportDeserializer>(V1TransportDeserializer(Params(), GetId(), SER_NETWORK, INIT_PROTO_VERSION));
m_serializer = std::make_unique<V1TransportSerializer>(V1TransportSerializer());
}
CNode::~CNode()
{
CloseSocket(hSocket);
}
bool CConnman::NodeFullyConnected(const CNode* pnode)
{
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
}
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
{
size_t nMessageSize = msg.data.size();
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command), nMessageSize, pnode->GetId());
// make sure we use the appropriate network transport format
std::vector<unsigned char> serializedHeader;
pnode->m_serializer->prepareForTransport(msg, serializedHeader);
size_t nTotalSize = nMessageSize + serializedHeader.size();
statsClient.count("bandwidth.message." + SanitizeString(msg.command.c_str()) + ".bytesSent", nTotalSize, 1.0f);
statsClient.inc("message.sent." + SanitizeString(msg.command.c_str()), 1.0f);
size_t nBytesSent = 0;
{
LOCK(pnode->cs_vSend);
bool hasPendingData = !pnode->vSendMsg.empty();
//log total amount of bytes per command
pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
pnode->nSendSize += nTotalSize;
if (pnode->nSendSize > nSendBufferMaxSize)
pnode->fPauseSend = true;
pnode->vSendMsg.push_back(std::move(serializedHeader));
if (nMessageSize)
pnode->vSendMsg.push_back(std::move(msg.data));
pnode->nSendMsgSize = pnode->vSendMsg.size();
{
LOCK(cs_mapNodesWithDataToSend);
// we're not holding cs_vNodes here, so there is a chance of this node being disconnected shortly before
// we get here. Whoever called PushMessage still has a ref to CNode*, but will later Release() it, so we
// might end up having an entry in mapNodesWithDataToSend that is not in vNodes anymore. We need to
// Add/Release refs when adding/erasing mapNodesWithDataToSend.
if (mapNodesWithDataToSend.emplace(pnode->GetId(), pnode).second) {
pnode->AddRef();
}
}
// wake up select() call in case there was no pending data before (so it was not selecting this socket for sending)
if (!hasPendingData && wakeupSelectNeeded)
WakeSelect();
}
if (nBytesSent)
RecordBytesSent(nBytesSent);
}
bool CConnman::ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func)
{
CNode* found = nullptr;
LOCK(cs_vNodes);
for (auto&& pnode : vNodes) {
if((CService)pnode->addr == addr) {
found = pnode;
break;
}
}
return found != nullptr && cond(found) && func(found);
}
bool CConnman::ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func)
{
CNode* found = nullptr;
LOCK(cs_vNodes);
for (auto&& pnode : vNodes) {
if(pnode->GetId() == id) {
found = pnode;
break;
}
}
return found != nullptr && cond(found) && func(found);
}
bool CConnman::IsMasternodeOrDisconnectRequested(const CService& addr) {
return ForNode(addr, AllNodes, [](CNode* pnode){
return pnode->m_masternode_connection || pnode->fDisconnect;
});
}
int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds)
{
if (m_next_send_inv_to_incoming < now) {
// If this function were called from multiple threads simultaneously
// it would possible that both update the next send variable, and return a different result to their caller.
// This is not possible in practice as only the net processing thread invokes this function.
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds);
}
return m_next_send_inv_to_incoming;
}
int64_t PoissonNextSend(int64_t now, int average_interval_seconds)
{
return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
}
std::vector<CNode*> CConnman::CopyNodeVector(std::function<bool(const CNode* pnode)> cond)
{
std::vector<CNode*> vecNodesCopy;
LOCK(cs_vNodes);
vecNodesCopy.reserve(vNodes.size());
for(size_t i = 0; i < vNodes.size(); ++i) {
CNode* pnode = vNodes[i];
if (!cond(pnode))
continue;
pnode->AddRef();
vecNodesCopy.push_back(pnode);
}
return vecNodesCopy;
}
std::vector<CNode*> CConnman::CopyNodeVector()
{
return CopyNodeVector(AllNodes);
}
void CConnman::ReleaseNodeVector(const std::vector<CNode*>& vecNodes)
{
for(size_t i = 0; i < vecNodes.size(); ++i) {
CNode* pnode = vecNodes[i];
pnode->Release();
}
}
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
{
return CSipHasher(nSeed0, nSeed1).Write(id);
}
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const
{
std::vector<unsigned char> vchNetGroup(ad.GetGroup(addrman.m_asmap));
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize();
}
void CConnman::RegisterEvents(CNode *pnode)
{
#ifdef USE_KQUEUE
if (socketEventsMode != SOCKETEVENTS_KQUEUE) {
return;
}
LOCK(pnode->cs_hSocket);
assert(pnode->hSocket != INVALID_SOCKET);
struct kevent events[2];
EV_SET(&events[0], pnode->hSocket, EVFILT_READ, EV_ADD, 0, 0, nullptr);
EV_SET(&events[1], pnode->hSocket, EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, nullptr);
int r = kevent(kqueuefd, events, 2, nullptr, 0, nullptr);
if (r != 0) {
LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__,
kqueuefd, EV_ADD, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
}
#endif
#ifdef USE_EPOLL
if (socketEventsMode != SOCKETEVENTS_EPOLL) {
return;
}
LOCK(pnode->cs_hSocket);
assert(pnode->hSocket != INVALID_SOCKET);
epoll_event e;
// We're using edge-triggered mode, so it's important that we drain sockets even if no signals come in
e.events = EPOLLIN | EPOLLOUT | EPOLLET | EPOLLERR | EPOLLHUP;
e.data.fd = pnode->hSocket;
int r = epoll_ctl(epollfd, EPOLL_CTL_ADD, pnode->hSocket, &e);
if (r != 0) {
LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__,
epollfd, EPOLL_CTL_ADD, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
}
#endif
}
void CConnman::UnregisterEvents(CNode *pnode)
{
#ifdef USE_KQUEUE
if (socketEventsMode != SOCKETEVENTS_KQUEUE) {
return;
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
return;
}
struct kevent events[2];
EV_SET(&events[0], pnode->hSocket, EVFILT_READ, EV_DELETE, 0, 0, nullptr);
EV_SET(&events[1], pnode->hSocket, EVFILT_WRITE, EV_DELETE, 0, 0, nullptr);
int r = kevent(kqueuefd, events, 2, nullptr, 0, nullptr);
if (r != 0) {
LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__,
kqueuefd, EV_DELETE, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
}
#endif
#ifdef USE_EPOLL
if (socketEventsMode != SOCKETEVENTS_EPOLL) {
return;
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET) {
return;
}
int r = epoll_ctl(epollfd, EPOLL_CTL_DEL, pnode->hSocket, nullptr);
if (r != 0) {
LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__,
epollfd, EPOLL_CTL_DEL, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
}
#endif
}