dash/qa/rpc-tests/invalidblockrequest.py
Tim Flynn 123aa04d5b Merge #950: V0.12.1.x governance pr 2
13316a4 Return true from IsBlockValueValid when masternode data is not synced
  - This restores behavior very close to that in 12.0
  - Needed to prevent the forking problem currently being seen on
    testnet between online and offline nodes
  - This is expected to be a temporary fix while we develop a
    long-term solution for this problem

427086e Restore miner payments for superblocks

794b90d Added IsSynced field to JSON output of mnsync status RPC command
  - This is needed to allow fixing RPC tests so that they wait until
    the nodes are fully synced before performing tests

a9ddf6f Wait for nodes to sync masternode data during p2p-fullblocktest
2016-08-19 05:53:49 -06:00

119 lines
4.1 KiB
Python
Executable File

#!/usr/bin/env python2
#
# Distributed under the MIT/X11 software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
from test_framework.test_framework import ComparisonTestFramework
from test_framework.util import *
from test_framework.comptool import TestManager, TestInstance, RejectResult
from test_framework.blocktools import *
import copy
import time
'''
In this test we connect to one node over p2p, and test block requests:
1) Valid blocks should be requested and become chain tip.
2) Invalid block with duplicated transaction should be re-requested.
3) Invalid block with bad coinbase value should be rejected and not
re-requested.
'''
# Use the ComparisonTestFramework with 1 node: only use --testbinary.
class InvalidBlockRequestTest(ComparisonTestFramework):
''' Can either run this test as 1 node with expected answers, or two and compare them.
Change the "outcome" variable from each TestInstance object to only do the comparison. '''
def __init__(self):
self.num_nodes = 1
def run_test(self):
test = TestManager(self, self.options.tmpdir)
test.add_all_connections(self.nodes)
self.tip = None
self.block_time = None
NetworkThread().start() # Start up network handling in another thread
sync_masternodes(self.nodes)
test.run()
def get_tests(self):
if self.tip is None:
self.tip = int ("0x" + self.nodes[0].getbestblockhash() + "L", 0)
self.block_time = int(time.time())+1
'''
Create a new block with an anyone-can-spend coinbase
'''
height = 1
block = create_block(self.tip, create_coinbase(height), self.block_time)
self.block_time += 1
block.solve()
# Save the coinbase for later
self.block1 = block
self.tip = block.sha256
height += 1
yield TestInstance([[block, True]])
'''
Now we need that block to mature so we can spend the coinbase.
'''
test = TestInstance(sync_every_block=False)
for i in xrange(100):
block = create_block(self.tip, create_coinbase(height), self.block_time)
block.solve()
self.tip = block.sha256
self.block_time += 1
test.blocks_and_transactions.append([block, True])
height += 1
yield test
'''
Now we use merkle-root malleability to generate an invalid block with
same blockheader.
Manufacture a block with 3 transactions (coinbase, spend of prior
coinbase, spend of that spend). Duplicate the 3rd transaction to
leave merkle root and blockheader unchanged but invalidate the block.
'''
block2 = create_block(self.tip, create_coinbase(height), self.block_time)
self.block_time += 1
# chr(81) is OP_TRUE
tx1 = create_transaction(self.block1.vtx[0], 0, chr(81), 50*100000000)
tx2 = create_transaction(tx1, 0, chr(81), 50*100000000)
block2.vtx.extend([tx1, tx2])
block2.hashMerkleRoot = block2.calc_merkle_root()
block2.rehash()
block2.solve()
orig_hash = block2.sha256
block2_orig = copy.deepcopy(block2)
# Mutate block 2
block2.vtx.append(tx2)
assert_equal(block2.hashMerkleRoot, block2.calc_merkle_root())
assert_equal(orig_hash, block2.rehash())
assert(block2_orig.vtx != block2.vtx)
self.tip = block2.sha256
yield TestInstance([[block2, RejectResult(16,'bad-txns-duplicate')], [block2_orig, True]])
height += 1
'''
Make sure that a totally screwed up block is not valid.
'''
block3 = create_block(self.tip, create_coinbase(height), self.block_time)
self.block_time += 1
block3.vtx[0].vout[0].nValue = 1000*100000000 # Too high!
block3.vtx[0].sha256=None
block3.vtx[0].calc_sha256()
block3.hashMerkleRoot = block3.calc_merkle_root()
block3.rehash()
block3.solve()
yield TestInstance([[block3, RejectResult(16,'bad-cb-amount')]])
if __name__ == '__main__':
InvalidBlockRequestTest().main()