mirror of
https://github.com/dashpay/dash.git
synced 2024-12-25 20:12:57 +01:00
30381acc76
fb8a4db8f6
Merge bitcoin/bitcoin#26717: test: Improve `check-doc.py` pattern (MarcoFalke)349cad2865
Merge bitcoin/bitcoin#26708: clang-tidy: Fix `modernize-use-nullptr` in headers (MarcoFalke)6bf786d168
Merge bitcoin/bitcoin#25735: net: remove useless call to IsReachable() from CConnman::Bind() (fanquake)012b0b7169
Merge bitcoin/bitcoin#24258: test: check localaddresses in getnetworkinfo for nodes with proxy (MarcoFalke)c67f527b0b
Merge bitcoin-core/gui#448: Add helper to load font (Hennadii Stepanov)8e0abeb1c1
Merge bitcoin-core/gui#345: Connection Type Translator Comments (Hennadii Stepanov)688b66e9d1
Merge bitcoin-core/gui#266: Doc: Copyright: Fix embedded font file location (MarcoFalke) Pull request description: ## Issue being fixed or feature implemented Trivial backports ## What was done? ## How Has This Been Tested? Built and ran tests locally; p2p_addr_relay.py fails locally. Not sure why ## Breaking Changes ## Checklist: _Go over all the following points, and put an `x` in all the boxes that apply._ - [ ] I have performed a self-review of my own code - [ ] I have commented my code, particularly in hard-to-understand areas - [ ] I have added or updated relevant unit/integration/functional/e2e tests - [ ] I have made corresponding changes to the documentation - [x] I have assigned this pull request to a milestone _(for repository code-owners and collaborators only)_ ACKs for top commit: UdjinM6: utACKfb8a4db8f6
knst: utACKfb8a4db8f6
Tree-SHA512: abb9469f25c6d45acea01da6d2b9cb6df94822f61d06f80e3008b32d2522016370a1e0b0c9ff95b92df22c4f227fc40f7765d76f1987eac7603155fe2d894593
4338 lines
161 KiB
C++
4338 lines
161 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2020 The Bitcoin Core developers
|
|
// Copyright (c) 2014-2024 The Dash Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include <config/bitcoin-config.h>
|
|
#endif
|
|
|
|
#include <net.h>
|
|
#include <netmessagemaker.h>
|
|
|
|
#include <addrdb.h>
|
|
#include <banman.h>
|
|
#include <clientversion.h>
|
|
#include <compat.h>
|
|
#include <consensus/consensus.h>
|
|
#include <crypto/sha256.h>
|
|
#include <i2p.h>
|
|
#include <net_permissions.h>
|
|
#include <netaddress.h>
|
|
#include <netbase.h>
|
|
#include <node/ui_interface.h>
|
|
#include <protocol.h>
|
|
#include <random.h>
|
|
#include <scheduler.h>
|
|
#include <util/sock.h>
|
|
#include <util/strencodings.h>
|
|
#include <util/system.h>
|
|
#include <util/thread.h>
|
|
#include <util/time.h>
|
|
#include <util/translation.h>
|
|
#include <util/wpipe.h>
|
|
#include <validation.h> // for fDIP0001ActiveAtTip
|
|
|
|
#include <masternode/meta.h>
|
|
#include <masternode/sync.h>
|
|
#include <coinjoin/coinjoin.h>
|
|
#include <evo/deterministicmns.h>
|
|
|
|
#include <statsd_client.h>
|
|
|
|
#ifdef WIN32
|
|
#include <string.h>
|
|
#else
|
|
#include <fcntl.h>
|
|
#endif
|
|
|
|
#if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
|
|
#include <ifaddrs.h>
|
|
#endif
|
|
|
|
#ifdef USE_POLL
|
|
#include <poll.h>
|
|
#endif
|
|
|
|
#ifdef USE_EPOLL
|
|
#include <sys/epoll.h>
|
|
#endif
|
|
|
|
#ifdef USE_KQUEUE
|
|
#include <sys/event.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <unordered_map>
|
|
|
|
#include <math.h>
|
|
|
|
/** Maximum number of block-relay-only anchor connections */
|
|
static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
|
|
static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
|
|
/** Anchor IP address database file name */
|
|
const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
|
|
|
|
// How often to dump addresses to peers.dat
|
|
static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
|
|
|
|
/** Number of DNS seeds to query when the number of connections is low. */
|
|
static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
|
|
|
|
/** How long to delay before querying DNS seeds
|
|
*
|
|
* If we have more than THRESHOLD entries in addrman, then it's likely
|
|
* that we got those addresses from having previously connected to the P2P
|
|
* network, and that we'll be able to successfully reconnect to the P2P
|
|
* network via contacting one of them. So if that's the case, spend a
|
|
* little longer trying to connect to known peers before querying the
|
|
* DNS seeds.
|
|
*/
|
|
static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
|
|
static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
|
|
static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
|
|
|
|
/** The default timeframe for -maxuploadtarget. 1 day. */
|
|
static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
|
|
|
|
// A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
|
|
static constexpr auto FEELER_SLEEP_WINDOW{1s};
|
|
|
|
/** Used to pass flags to the Bind() function */
|
|
enum BindFlags {
|
|
BF_NONE = 0,
|
|
BF_REPORT_ERROR = (1U << 0),
|
|
/**
|
|
* Do not call AddLocal() for our special addresses, e.g., for incoming
|
|
* Tor connections, to prevent gossiping them over the network.
|
|
*/
|
|
BF_DONT_ADVERTISE = (1U << 1),
|
|
};
|
|
|
|
#ifndef USE_WAKEUP_PIPE
|
|
// The set of sockets cannot be modified while waiting
|
|
// The sleep time needs to be small to avoid new sockets stalling
|
|
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
|
|
#else
|
|
// select() is woken up through the wakeup pipe whenever a new node is added, so we can wait much longer.
|
|
// We are however still somewhat limited in how long we can sleep as there is periodic work (cleanup) to be done in
|
|
// the socket handler thread
|
|
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 500;
|
|
#endif /* USE_WAKEUP_PIPE */
|
|
|
|
const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
|
|
|
|
constexpr const CConnman::CFullyConnectedOnly CConnman::FullyConnectedOnly;
|
|
constexpr const CConnman::CAllNodes CConnman::AllNodes;
|
|
|
|
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
|
|
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
|
|
static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
|
|
//
|
|
// Global state variables
|
|
//
|
|
bool fDiscover = true;
|
|
bool fListen = true;
|
|
Mutex g_maplocalhost_mutex;
|
|
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
|
|
static bool vfLimited[NET_MAX] GUARDED_BY(g_maplocalhost_mutex) = {};
|
|
std::string strSubVersion;
|
|
|
|
void CConnman::AddAddrFetch(const std::string& strDest)
|
|
{
|
|
LOCK(m_addr_fetches_mutex);
|
|
m_addr_fetches.push_back(strDest);
|
|
}
|
|
|
|
uint16_t GetListenPort()
|
|
{
|
|
// If -bind= is provided with ":port" part, use that (first one if multiple are provided).
|
|
for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
|
|
CService bind_addr;
|
|
constexpr uint16_t dummy_port = 0;
|
|
|
|
if (Lookup(bind_arg, bind_addr, dummy_port, /*fAllowLookup=*/false)) {
|
|
if (bind_addr.GetPort() != dummy_port) {
|
|
return bind_addr.GetPort();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
|
|
// (-whitebind= is required to have ":port").
|
|
for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
|
|
NetWhitebindPermissions whitebind;
|
|
bilingual_str error;
|
|
if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
|
|
if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
|
|
return whitebind.m_service.GetPort();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, if -port= is provided, use that. Otherwise use the default port.
|
|
return static_cast<uint16_t>(gArgs.GetArg("-port", Params().GetDefaultPort()));
|
|
}
|
|
|
|
// find 'best' local address for a particular peer
|
|
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
|
|
{
|
|
if (!fListen)
|
|
return false;
|
|
|
|
int nBestScore = -1;
|
|
int nBestReachability = -1;
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
for (const auto& entry : mapLocalHost)
|
|
{
|
|
int nScore = entry.second.nScore;
|
|
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
|
|
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
|
|
{
|
|
addr = CService(entry.first, entry.second.nPort);
|
|
nBestReachability = nReachability;
|
|
nBestScore = nScore;
|
|
}
|
|
}
|
|
}
|
|
return nBestScore >= 0;
|
|
}
|
|
|
|
//! Convert the serialized seeds into usable address objects.
|
|
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
|
|
{
|
|
// It'll only connect to one or two seed nodes because once it connects,
|
|
// it'll get a pile of addresses with newer timestamps.
|
|
// Seed nodes are given a random 'last seen time' of between one and two
|
|
// weeks ago.
|
|
const int64_t nOneWeek = 7*24*60*60;
|
|
std::vector<CAddress> vSeedsOut;
|
|
FastRandomContext rng;
|
|
CDataStream s(vSeedsIn, SER_NETWORK, PROTOCOL_VERSION | ADDRV2_FORMAT);
|
|
while (!s.eof()) {
|
|
CService endpoint;
|
|
s >> endpoint;
|
|
CAddress addr{endpoint, GetDesirableServiceFlags(NODE_NONE)};
|
|
addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
|
|
LogPrint(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToString());
|
|
vSeedsOut.push_back(addr);
|
|
}
|
|
return vSeedsOut;
|
|
}
|
|
|
|
// get best local address for a particular peer as a CAddress
|
|
// Otherwise, return the unroutable 0.0.0.0 but filled in with
|
|
// the normal parameters, since the IP may be changed to a useful
|
|
// one by discovery.
|
|
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
|
|
{
|
|
CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
|
|
CService addr;
|
|
if (GetLocal(addr, paddrPeer))
|
|
{
|
|
ret = CAddress(addr, nLocalServices);
|
|
}
|
|
ret.nTime = GetAdjustedTime();
|
|
return ret;
|
|
}
|
|
|
|
static int GetnScore(const CService& addr)
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
const auto it = mapLocalHost.find(addr);
|
|
return (it != mapLocalHost.end()) ? it->second.nScore : 0;
|
|
}
|
|
|
|
// Is our peer's addrLocal potentially useful as an external IP source?
|
|
bool IsPeerAddrLocalGood(CNode *pnode)
|
|
{
|
|
CService addrLocal = pnode->GetAddrLocal();
|
|
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
|
|
IsReachable(addrLocal.GetNetwork());
|
|
}
|
|
|
|
std::optional<CAddress> GetLocalAddrForPeer(CNode *pnode)
|
|
{
|
|
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
|
|
if (gArgs.GetBoolArg("-addrmantest", false)) {
|
|
// use IPv4 loopback during addrmantest
|
|
addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices());
|
|
}
|
|
// If discovery is enabled, sometimes give our peer the address it
|
|
// tells us that it sees us as in case it has a better idea of our
|
|
// address than we do.
|
|
FastRandomContext rng;
|
|
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
|
|
rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
|
|
{
|
|
if (pnode->IsInboundConn()) {
|
|
// For inbound connections, assume both the address and the port
|
|
// as seen from the peer.
|
|
addrLocal = CAddress{pnode->GetAddrLocal(), addrLocal.nServices};
|
|
} else {
|
|
// For outbound connections, assume just the address as seen from
|
|
// the peer and leave the port in `addrLocal` as returned by
|
|
// `GetLocalAddress()` above. The peer has no way to observe our
|
|
// listening port when we have initiated the connection.
|
|
addrLocal.SetIP(pnode->GetAddrLocal());
|
|
}
|
|
}
|
|
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
|
|
{
|
|
LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToString(), pnode->GetId());
|
|
return addrLocal;
|
|
}
|
|
// Address is unroutable. Don't advertise.
|
|
return std::nullopt;
|
|
}
|
|
|
|
/**
|
|
* If an IPv6 address belongs to the address range used by the CJDNS network and
|
|
* the CJDNS network is reachable (-cjdnsreachable config is set), then change
|
|
* the type from NET_IPV6 to NET_CJDNS.
|
|
* @param[in] service Address to potentially convert.
|
|
* @return a copy of `service` either unmodified or changed to CJDNS.
|
|
*/
|
|
CService MaybeFlipIPv6toCJDNS(const CService& service)
|
|
{
|
|
CService ret{service};
|
|
if (ret.m_net == NET_IPV6 && ret.m_addr[0] == 0xfc && IsReachable(NET_CJDNS)) {
|
|
ret.m_net = NET_CJDNS;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// learn a new local address
|
|
bool AddLocal(const CService& addr_, int nScore)
|
|
{
|
|
CService addr{MaybeFlipIPv6toCJDNS(addr_)};
|
|
|
|
if (!addr.IsRoutable() && Params().RequireRoutableExternalIP())
|
|
return false;
|
|
|
|
if (!fDiscover && nScore < LOCAL_MANUAL)
|
|
return false;
|
|
|
|
if (!IsReachable(addr))
|
|
return false;
|
|
|
|
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
|
|
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
|
|
LocalServiceInfo &info = it->second;
|
|
if (is_newly_added || nScore >= info.nScore) {
|
|
info.nScore = nScore + (is_newly_added ? 0 : 1);
|
|
info.nPort = addr.GetPort();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AddLocal(const CNetAddr &addr, int nScore)
|
|
{
|
|
return AddLocal(CService(addr, GetListenPort()), nScore);
|
|
}
|
|
|
|
void RemoveLocal(const CService& addr)
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
|
|
mapLocalHost.erase(addr);
|
|
}
|
|
|
|
void SetReachable(enum Network net, bool reachable)
|
|
{
|
|
if (net == NET_UNROUTABLE || net == NET_INTERNAL)
|
|
return;
|
|
LOCK(g_maplocalhost_mutex);
|
|
vfLimited[net] = !reachable;
|
|
}
|
|
|
|
bool IsReachable(enum Network net)
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
return !vfLimited[net];
|
|
}
|
|
|
|
bool IsReachable(const CNetAddr &addr)
|
|
{
|
|
return IsReachable(addr.GetNetwork());
|
|
}
|
|
|
|
/** vote for a local address */
|
|
bool SeenLocal(const CService& addr)
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
const auto it = mapLocalHost.find(addr);
|
|
if (it == mapLocalHost.end()) return false;
|
|
++it->second.nScore;
|
|
return true;
|
|
}
|
|
|
|
|
|
/** check whether a given address is potentially local */
|
|
bool IsLocal(const CService& addr)
|
|
{
|
|
LOCK(g_maplocalhost_mutex);
|
|
return mapLocalHost.count(addr) > 0;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CNetAddr& ip, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (static_cast<CNetAddr>(pnode->addr) == ip) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CSubNet& subNet, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const std::string& addrName, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (pnode->m_addr_name == addrName) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CService& addr, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (static_cast<CService>(pnode->addr) == addr) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
|
|
{
|
|
return FindNode(addr.ToStringIPPort());
|
|
}
|
|
|
|
bool CConnman::CheckIncomingNonce(uint64_t nonce)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Get the bind address for a socket as CAddress */
|
|
static CAddress GetBindAddress(const Sock& sock)
|
|
{
|
|
CAddress addr_bind;
|
|
struct sockaddr_storage sockaddr_bind;
|
|
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
|
|
if (sock.Get() != INVALID_SOCKET) {
|
|
if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
|
|
addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
|
|
}
|
|
}
|
|
return addr_bind;
|
|
}
|
|
|
|
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type)
|
|
{
|
|
AssertLockNotHeld(m_unused_i2p_sessions_mutex);
|
|
assert(conn_type != ConnectionType::INBOUND);
|
|
|
|
if (pszDest == nullptr) {
|
|
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
|
|
if (!fAllowLocal && IsLocal(addrConnect)) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Look for an existing connection
|
|
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
|
|
if (pnode)
|
|
{
|
|
LogPrintf("Failed to open new connection, already connected\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// debug print
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
|
|
pszDest ? pszDest : addrConnect.ToString(),
|
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
|
|
} else {
|
|
LogPrint(BCLog::NET, "trying connection lastseen=%.1fhrs\n",
|
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
|
|
}
|
|
|
|
// Resolve
|
|
const uint16_t default_port{pszDest != nullptr ? Params().GetDefaultPort(pszDest) :
|
|
Params().GetDefaultPort()};
|
|
if (pszDest) {
|
|
std::vector<CService> resolved;
|
|
if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) {
|
|
const CService rnd{resolved[GetRand(resolved.size())]};
|
|
addrConnect = CAddress{MaybeFlipIPv6toCJDNS(rnd), NODE_NONE};
|
|
if (!addrConnect.IsValid()) {
|
|
LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest);
|
|
return nullptr;
|
|
}
|
|
// It is possible that we already have a connection to the IP/port pszDest resolved to.
|
|
// In that case, drop the connection that was just created.
|
|
LOCK(m_nodes_mutex);
|
|
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
|
|
if (pnode) {
|
|
LogPrintf("Failed to open new connection, already connected\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Connect
|
|
bool connected = false;
|
|
std::unique_ptr<Sock> sock;
|
|
Proxy proxy;
|
|
CAddress addr_bind;
|
|
assert(!addr_bind.IsValid());
|
|
std::unique_ptr<i2p::sam::Session> i2p_transient_session;
|
|
|
|
if (addrConnect.IsValid()) {
|
|
const bool use_proxy{GetProxy(addrConnect.GetNetwork(), proxy)};
|
|
bool proxyConnectionFailed = false;
|
|
|
|
if (addrConnect.GetNetwork() == NET_I2P && use_proxy) {
|
|
i2p::Connection conn;
|
|
|
|
if (m_i2p_sam_session) {
|
|
connected = m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed);
|
|
} else {
|
|
{
|
|
LOCK(m_unused_i2p_sessions_mutex);
|
|
if (m_unused_i2p_sessions.empty()) {
|
|
i2p_transient_session =
|
|
std::make_unique<i2p::sam::Session>(proxy.proxy, &interruptNet);
|
|
} else {
|
|
i2p_transient_session.swap(m_unused_i2p_sessions.front());
|
|
m_unused_i2p_sessions.pop();
|
|
}
|
|
}
|
|
connected = i2p_transient_session->Connect(addrConnect, conn, proxyConnectionFailed);
|
|
if (!connected) {
|
|
LOCK(m_unused_i2p_sessions_mutex);
|
|
if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
|
|
m_unused_i2p_sessions.emplace(i2p_transient_session.release());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (connected) {
|
|
sock = std::move(conn.sock);
|
|
addr_bind = CAddress{conn.me, NODE_NONE};
|
|
}
|
|
} else if (use_proxy) {
|
|
sock = CreateSock(proxy.proxy);
|
|
if (!sock) {
|
|
return nullptr;
|
|
}
|
|
connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(),
|
|
*sock, nConnectTimeout, proxyConnectionFailed);
|
|
} else {
|
|
// no proxy needed (none set for target network)
|
|
sock = CreateSock(addrConnect);
|
|
if (!sock) {
|
|
return nullptr;
|
|
}
|
|
connected = ConnectSocketDirectly(addrConnect, *sock, nConnectTimeout, conn_type == ConnectionType::MANUAL);
|
|
}
|
|
if (!proxyConnectionFailed) {
|
|
// If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
|
|
// the proxy, mark this as an attempt.
|
|
addrman.Attempt(addrConnect, fCountFailure);
|
|
}
|
|
} else if (pszDest && GetNameProxy(proxy)) {
|
|
sock = CreateSock(proxy.proxy);
|
|
if (!sock) {
|
|
return nullptr;
|
|
}
|
|
std::string host;
|
|
uint16_t port{default_port};
|
|
SplitHostPort(std::string(pszDest), port, host);
|
|
bool proxyConnectionFailed;
|
|
connected = ConnectThroughProxy(proxy, host, port, *sock, nConnectTimeout,
|
|
proxyConnectionFailed);
|
|
}
|
|
if (!connected) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Add node
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
if (!addr_bind.IsValid()) {
|
|
addr_bind = GetBindAddress(*sock);
|
|
}
|
|
CNode* pnode = new CNode(id,
|
|
nLocalServices,
|
|
std::move(sock),
|
|
addrConnect,
|
|
CalculateKeyedNetGroup(addrConnect),
|
|
nonce,
|
|
addr_bind,
|
|
pszDest ? pszDest : "",
|
|
conn_type,
|
|
/*inbound_onion=*/false,
|
|
std::move(i2p_transient_session));
|
|
pnode->AddRef();
|
|
statsClient.inc("peers.connect", 1.0f);
|
|
|
|
// We're making a new connection, harvest entropy from the time (and our peer count)
|
|
RandAddEvent((uint32_t)id);
|
|
|
|
return pnode;
|
|
}
|
|
|
|
void CNode::CloseSocketDisconnect(CConnman* connman)
|
|
{
|
|
AssertLockHeld(connman->m_nodes_mutex);
|
|
|
|
fDisconnect = true;
|
|
LOCK2(connman->cs_mapSocketToNode, m_sock_mutex);
|
|
if (!m_sock) {
|
|
return;
|
|
}
|
|
|
|
fHasRecvData = false;
|
|
fCanSendData = false;
|
|
|
|
connman->mapSocketToNode.erase(m_sock->Get());
|
|
{
|
|
LOCK(connman->cs_sendable_receivable_nodes);
|
|
connman->mapReceivableNodes.erase(GetId());
|
|
connman->mapSendableNodes.erase(GetId());
|
|
}
|
|
{
|
|
LOCK(connman->cs_mapNodesWithDataToSend);
|
|
if (connman->mapNodesWithDataToSend.erase(GetId()) != 0) {
|
|
// See comment in PushMessage
|
|
Release();
|
|
}
|
|
}
|
|
|
|
if (connman->m_edge_trig_events && !connman->m_edge_trig_events->UnregisterEvents(m_sock->Get())) {
|
|
LogPrint(BCLog::NET, "EdgeTriggeredEvents::UnregisterEvents() failed\n");
|
|
}
|
|
|
|
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
|
|
m_sock.reset();
|
|
m_i2p_sam_session.reset();
|
|
|
|
statsClient.inc("peers.disconnect", 1.0f);
|
|
}
|
|
|
|
void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr) const {
|
|
for (const auto& subnet : vWhitelistedRange) {
|
|
if (subnet.m_subnet.Match(addr)) NetPermissions::AddFlag(flags, subnet.m_flags);
|
|
}
|
|
}
|
|
|
|
bool CNode::IsBlockRelayOnly() const {
|
|
bool ignores_incoming_txs{gArgs.GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY)};
|
|
// Stop processing non-block data early if
|
|
// 1) We are in blocks only mode and peer has no relay permission
|
|
// 2) This peer is a block-relay-only peer
|
|
return (ignores_incoming_txs && !HasPermission(NetPermissionFlags::Relay)) || IsBlockOnlyConn();
|
|
}
|
|
|
|
std::string ConnectionTypeAsString(ConnectionType conn_type)
|
|
{
|
|
switch (conn_type) {
|
|
case ConnectionType::INBOUND:
|
|
return "inbound";
|
|
case ConnectionType::MANUAL:
|
|
return "manual";
|
|
case ConnectionType::FEELER:
|
|
return "feeler";
|
|
case ConnectionType::OUTBOUND_FULL_RELAY:
|
|
return "outbound-full-relay";
|
|
case ConnectionType::BLOCK_RELAY:
|
|
return "block-relay-only";
|
|
case ConnectionType::ADDR_FETCH:
|
|
return "addr-fetch";
|
|
} // no default case, so the compiler can warn about missing cases
|
|
|
|
assert(false);
|
|
}
|
|
|
|
CService CNode::GetAddrLocal() const
|
|
{
|
|
AssertLockNotHeld(m_addr_local_mutex);
|
|
LOCK(m_addr_local_mutex);
|
|
return addrLocal;
|
|
}
|
|
|
|
void CNode::SetAddrLocal(const CService& addrLocalIn) {
|
|
AssertLockNotHeld(m_addr_local_mutex);
|
|
LOCK(m_addr_local_mutex);
|
|
if (addrLocal.IsValid()) {
|
|
error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
|
|
} else {
|
|
addrLocal = addrLocalIn;
|
|
}
|
|
}
|
|
|
|
std::string CNode::GetLogString() const
|
|
{
|
|
return fLogIPs ? addr.ToString() : strprintf("%d", id);
|
|
}
|
|
|
|
Network CNode::ConnectedThroughNetwork() const
|
|
{
|
|
return m_inbound_onion ? NET_ONION : addr.GetNetClass();
|
|
}
|
|
|
|
#undef X
|
|
#define X(name) stats.name = name
|
|
void CNode::CopyStats(CNodeStats& stats)
|
|
{
|
|
stats.nodeid = this->GetId();
|
|
X(nServices);
|
|
X(addr);
|
|
X(addrBind);
|
|
stats.m_network = ConnectedThroughNetwork();
|
|
X(m_last_send);
|
|
X(m_last_recv);
|
|
X(m_last_tx_time);
|
|
X(m_last_block_time);
|
|
X(m_connected);
|
|
X(nTimeOffset);
|
|
X(m_addr_name);
|
|
X(nVersion);
|
|
{
|
|
LOCK(m_subver_mutex);
|
|
X(cleanSubVer);
|
|
}
|
|
stats.fInbound = IsInboundConn();
|
|
stats.m_manual_connection = IsManualConn();
|
|
X(m_bip152_highbandwidth_to);
|
|
X(m_bip152_highbandwidth_from);
|
|
{
|
|
LOCK(cs_vSend);
|
|
X(mapSendBytesPerMsgType);
|
|
X(nSendBytes);
|
|
}
|
|
{
|
|
LOCK(cs_vRecv);
|
|
X(mapRecvBytesPerMsgType);
|
|
X(nRecvBytes);
|
|
}
|
|
X(m_legacyWhitelisted);
|
|
X(m_permissionFlags);
|
|
|
|
X(m_last_ping_time);
|
|
X(m_min_ping_time);
|
|
|
|
// Leave string empty if addrLocal invalid (not filled in yet)
|
|
CService addrLocalUnlocked = GetAddrLocal();
|
|
stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
|
|
|
|
{
|
|
LOCK(cs_mnauth);
|
|
X(verifiedProRegTxHash);
|
|
X(verifiedPubKeyHash);
|
|
}
|
|
X(m_masternode_connection);
|
|
X(m_conn_type);
|
|
}
|
|
#undef X
|
|
|
|
bool CNode::ReceiveMsgBytes(Span<const uint8_t> msg_bytes, bool& complete)
|
|
{
|
|
complete = false;
|
|
// TODO: use mocktime here after bitcoin#19499 is backported
|
|
const auto time = std::chrono::microseconds(GetTimeMicros());
|
|
LOCK(cs_vRecv);
|
|
m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
|
|
nRecvBytes += msg_bytes.size();
|
|
while (msg_bytes.size() > 0) {
|
|
// absorb network data
|
|
int handled = m_deserializer->Read(msg_bytes);
|
|
if (handled < 0) {
|
|
// Serious header problem, disconnect from the peer.
|
|
return false;
|
|
}
|
|
|
|
if (m_deserializer->Complete()) {
|
|
// decompose a transport agnostic CNetMessage from the deserializer
|
|
bool reject_message{false};
|
|
CNetMessage msg = m_deserializer->GetMessage(time, reject_message);
|
|
if (reject_message) {
|
|
// Message deserialization failed. Drop the message but don't disconnect the peer.
|
|
// store the size of the corrupt message
|
|
mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
|
|
continue;
|
|
}
|
|
|
|
// Store received bytes per message type.
|
|
// To prevent a memory DOS, only allow known message types.
|
|
auto i = mapRecvBytesPerMsgType.find(msg.m_type);
|
|
if (i == mapRecvBytesPerMsgType.end()) {
|
|
i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
|
|
}
|
|
assert(i != mapRecvBytesPerMsgType.end());
|
|
i->second += msg.m_raw_message_size;
|
|
statsClient.count("bandwidth.message." + std::string(msg.m_type) + ".bytesReceived", msg.m_raw_message_size, 1.0f);
|
|
|
|
// push the message to the process queue,
|
|
vRecvMsg.push_back(std::move(msg));
|
|
|
|
complete = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int V1TransportDeserializer::readHeader(Span<const uint8_t> msg_bytes)
|
|
{
|
|
// copy data to temporary parsing buffer
|
|
unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
|
|
unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
|
|
|
|
memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
|
|
nHdrPos += nCopy;
|
|
|
|
// if header incomplete, exit
|
|
if (nHdrPos < CMessageHeader::HEADER_SIZE)
|
|
return nCopy;
|
|
|
|
// deserialize to CMessageHeader
|
|
try {
|
|
hdrbuf >> hdr;
|
|
}
|
|
catch (const std::exception&) {
|
|
LogPrint(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
|
|
return -1;
|
|
}
|
|
|
|
// Check start string, network magic
|
|
if (memcmp(hdr.pchMessageStart, m_chain_params.MessageStart(), CMessageHeader::MESSAGE_START_SIZE) != 0) {
|
|
LogPrint(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
|
|
return -1;
|
|
}
|
|
|
|
// reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
|
|
if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
|
|
LogPrint(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetCommand()), hdr.nMessageSize, m_node_id);
|
|
return -1;
|
|
}
|
|
|
|
// switch state to reading message data
|
|
in_data = true;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
int V1TransportDeserializer::readData(Span<const uint8_t> msg_bytes)
|
|
{
|
|
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
|
|
unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
|
|
|
|
if (vRecv.size() < nDataPos + nCopy) {
|
|
// Allocate up to 256 KiB ahead, but never more than the total message size.
|
|
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
|
|
}
|
|
|
|
hasher.Write(msg_bytes.first(nCopy));
|
|
memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
|
|
nDataPos += nCopy;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
const uint256& V1TransportDeserializer::GetMessageHash() const
|
|
{
|
|
assert(Complete());
|
|
if (data_hash.IsNull())
|
|
hasher.Finalize(data_hash);
|
|
return data_hash;
|
|
}
|
|
|
|
CNetMessage V1TransportDeserializer::GetMessage(const std::chrono::microseconds time, bool& reject_message)
|
|
{
|
|
// Initialize out parameter
|
|
reject_message = false;
|
|
// decompose a single CNetMessage from the TransportDeserializer
|
|
CNetMessage msg(std::move(vRecv));
|
|
|
|
// store message type string, time, and sizes
|
|
msg.m_type = hdr.GetCommand();
|
|
msg.m_time = time;
|
|
msg.m_message_size = hdr.nMessageSize;
|
|
msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
|
|
uint256 hash = GetMessageHash();
|
|
|
|
// We just received a message off the wire, harvest entropy from the time (and the message checksum)
|
|
RandAddEvent(ReadLE32(hash.begin()));
|
|
|
|
// Check checksum and header message type string
|
|
if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
|
|
LogPrint(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
|
|
SanitizeString(msg.m_type), msg.m_message_size,
|
|
HexStr(Span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
|
|
HexStr(hdr.pchChecksum),
|
|
m_node_id);
|
|
reject_message = true;
|
|
} else if (!hdr.IsCommandValid()) {
|
|
LogPrint(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
|
|
SanitizeString(hdr.GetCommand()), msg.m_message_size, m_node_id);
|
|
reject_message = true;
|
|
}
|
|
|
|
// Always reset the network deserializer (prepare for the next message)
|
|
Reset();
|
|
return msg;
|
|
}
|
|
|
|
void V1TransportSerializer::prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) const
|
|
{
|
|
// create dbl-sha256 checksum
|
|
uint256 hash = Hash(msg.data);
|
|
|
|
// create header
|
|
CMessageHeader hdr(Params().MessageStart(), msg.m_type.c_str(), msg.data.size());
|
|
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
|
|
|
|
// serialize header
|
|
header.reserve(CMessageHeader::HEADER_SIZE);
|
|
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
|
|
}
|
|
|
|
size_t CConnman::SocketSendData(CNode& node)
|
|
{
|
|
auto it = node.vSendMsg.begin();
|
|
size_t nSentSize = 0;
|
|
|
|
while (it != node.vSendMsg.end()) {
|
|
const auto& data = *it;
|
|
assert(data.size() > node.nSendOffset);
|
|
int nBytes = 0;
|
|
{
|
|
LOCK(node.m_sock_mutex);
|
|
if (!node.m_sock) {
|
|
break;
|
|
}
|
|
nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()) + node.nSendOffset, data.size() - node.nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
}
|
|
if (nBytes > 0) {
|
|
node.m_last_send = GetTime<std::chrono::seconds>();
|
|
node.nSendBytes += nBytes;
|
|
node.nSendOffset += nBytes;
|
|
nSentSize += nBytes;
|
|
if (node.nSendOffset == data.size()) {
|
|
node.nSendOffset = 0;
|
|
node.nSendSize -= data.size();
|
|
node.fPauseSend = node.nSendSize > nSendBufferMaxSize;
|
|
it++;
|
|
} else {
|
|
// could not send full message; stop sending more
|
|
node.fCanSendData = false;
|
|
break;
|
|
}
|
|
} else {
|
|
if (nBytes < 0) {
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
|
|
LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr));
|
|
node.fDisconnect = true;
|
|
}
|
|
}
|
|
// couldn't send anything at all
|
|
node.fCanSendData = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (it == node.vSendMsg.end()) {
|
|
assert(node.nSendOffset == 0);
|
|
assert(node.nSendSize == 0);
|
|
}
|
|
node.vSendMsg.erase(node.vSendMsg.begin(), it);
|
|
node.nSendMsgSize = node.vSendMsg.size();
|
|
return nSentSize;
|
|
}
|
|
|
|
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
|
|
{
|
|
return a.m_min_ping_time > b.m_min_ping_time;
|
|
}
|
|
|
|
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
|
|
{
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
|
|
return a.nKeyedNetGroup < b.nKeyedNetGroup;
|
|
}
|
|
|
|
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
|
|
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
|
|
if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time;
|
|
if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs;
|
|
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
// Pick out the potential block-relay only peers, and sort them by last block time.
|
|
static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs;
|
|
if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.m_connected > b.m_connected;
|
|
}
|
|
|
|
/**
|
|
* Sort eviction candidates by network/localhost and connection uptime.
|
|
* Candidates near the beginning are more likely to be evicted, and those
|
|
* near the end are more likely to be protected, e.g. less likely to be evicted.
|
|
* - First, nodes that are not `is_local` and that do not belong to `network`,
|
|
* sorted by increasing uptime (from most recently connected to connected longer).
|
|
* - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime.
|
|
*/
|
|
struct CompareNodeNetworkTime {
|
|
const bool m_is_local;
|
|
const Network m_network;
|
|
CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {}
|
|
bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const
|
|
{
|
|
if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local;
|
|
if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network;
|
|
return a.m_connected > b.m_connected;
|
|
};
|
|
};
|
|
|
|
//! Sort an array by the specified comparator, then erase the last K elements where predicate is true.
|
|
template <typename T, typename Comparator>
|
|
static void EraseLastKElements(
|
|
std::vector<T>& elements, Comparator comparator, size_t k,
|
|
std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; })
|
|
{
|
|
std::sort(elements.begin(), elements.end(), comparator);
|
|
size_t eraseSize = std::min(k, elements.size());
|
|
elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end());
|
|
}
|
|
|
|
void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates)
|
|
{
|
|
// Protect the half of the remaining nodes which have been connected the longest.
|
|
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
|
|
// To favorise the diversity of our peer connections, reserve up to half of these protected
|
|
// spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime
|
|
// overall. This helps protect these higher-latency peers that tend to be otherwise
|
|
// disadvantaged under our eviction criteria.
|
|
const size_t initial_size = eviction_candidates.size();
|
|
const size_t total_protect_size{initial_size / 2};
|
|
|
|
// Disadvantaged networks to protect. In the case of equal counts, earlier array members
|
|
// have the first opportunity to recover unused slots from the previous iteration.
|
|
struct Net { bool is_local; Network id; size_t count; };
|
|
std::array<Net, 4> networks{
|
|
{{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}};
|
|
|
|
// Count and store the number of eviction candidates per network.
|
|
for (Net& n : networks) {
|
|
n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(),
|
|
[&n](const NodeEvictionCandidate& c) {
|
|
return n.is_local ? c.m_is_local : c.m_network == n.id;
|
|
});
|
|
}
|
|
// Sort `networks` by ascending candidate count, to give networks having fewer candidates
|
|
// the first opportunity to recover unused protected slots from the previous iteration.
|
|
std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; });
|
|
|
|
// Protect up to 25% of the eviction candidates by disadvantaged network.
|
|
const size_t max_protect_by_network{total_protect_size / 2};
|
|
size_t num_protected{0};
|
|
|
|
while (num_protected < max_protect_by_network) {
|
|
// Count the number of disadvantaged networks from which we have peers to protect.
|
|
auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; });
|
|
if (num_networks == 0) {
|
|
break;
|
|
}
|
|
const size_t disadvantaged_to_protect{max_protect_by_network - num_protected};
|
|
const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
|
|
// Early exit flag if there are no remaining candidates by disadvantaged network.
|
|
bool protected_at_least_one{false};
|
|
|
|
for (Net& n : networks) {
|
|
if (n.count == 0) continue;
|
|
const size_t before = eviction_candidates.size();
|
|
EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
|
|
protect_per_network, [&n](const NodeEvictionCandidate& c) {
|
|
return n.is_local ? c.m_is_local : c.m_network == n.id;
|
|
});
|
|
const size_t after = eviction_candidates.size();
|
|
if (before > after) {
|
|
protected_at_least_one = true;
|
|
const size_t delta{before - after};
|
|
num_protected += delta;
|
|
if (num_protected >= max_protect_by_network) {
|
|
break;
|
|
}
|
|
n.count -= delta;
|
|
}
|
|
}
|
|
if (!protected_at_least_one) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calculate how many we removed, and update our total number of peers that
|
|
// we want to protect based on uptime accordingly.
|
|
assert(num_protected == initial_size - eviction_candidates.size());
|
|
const size_t remaining_to_protect{total_protect_size - num_protected};
|
|
EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect);
|
|
}
|
|
|
|
[[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates)
|
|
{
|
|
// Protect connections with certain characteristics
|
|
|
|
// Deterministically select 4 peers to protect by netgroup.
|
|
// An attacker cannot predict which netgroups will be protected
|
|
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
|
|
// Protect the 8 nodes with the lowest minimum ping time.
|
|
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
|
|
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
|
|
// Protect 4 nodes that most recently sent us novel transactions accepted into our mempool.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
|
|
// Protect up to 8 non-tx-relay peers that have sent us novel blocks.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
|
|
[](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; });
|
|
|
|
// Protect 4 nodes that most recently sent us novel blocks.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
|
|
|
|
// Protect some of the remaining eviction candidates by ratios of desirable
|
|
// or disadvantaged characteristics.
|
|
ProtectEvictionCandidatesByRatio(vEvictionCandidates);
|
|
|
|
if (vEvictionCandidates.empty()) return std::nullopt;
|
|
|
|
// If any remaining peers are preferred for eviction consider only them.
|
|
// This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks)
|
|
// then we probably don't want to evict it no matter what.
|
|
if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) {
|
|
vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(),
|
|
[](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end());
|
|
}
|
|
|
|
// Identify the network group with the most connections and youngest member.
|
|
// (vEvictionCandidates is already sorted by reverse connect time)
|
|
uint64_t naMostConnections;
|
|
unsigned int nMostConnections = 0;
|
|
std::chrono::seconds nMostConnectionsTime{0};
|
|
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
|
|
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
|
|
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
|
|
group.push_back(node);
|
|
const auto grouptime{group[0].m_connected};
|
|
|
|
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
|
|
nMostConnections = group.size();
|
|
nMostConnectionsTime = grouptime;
|
|
naMostConnections = node.nKeyedNetGroup;
|
|
}
|
|
}
|
|
|
|
// Reduce to the network group with the most connections
|
|
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
|
|
|
|
// Disconnect from the network group with the most connections
|
|
return vEvictionCandidates.front().id;
|
|
}
|
|
|
|
/** Try to find a connection to evict when the node is full.
|
|
* Extreme care must be taken to avoid opening the node to attacker
|
|
* triggered network partitioning.
|
|
* The strategy used here is to protect a small number of peers
|
|
* for each of several distinct characteristics which are difficult
|
|
* to forge. In order to partition a node the attacker must be
|
|
* simultaneously better at all of them than honest peers.
|
|
*/
|
|
bool CConnman::AttemptToEvictConnection()
|
|
{
|
|
std::vector<NodeEvictionCandidate> vEvictionCandidates;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
|
|
for (const CNode* node : m_nodes) {
|
|
if (node->HasPermission(NetPermissionFlags::NoBan))
|
|
continue;
|
|
if (!node->IsInboundConn())
|
|
continue;
|
|
if (node->fDisconnect)
|
|
continue;
|
|
|
|
if (fMasternodeMode) {
|
|
// This handles eviction protected nodes. Nodes are always protected for a short time after the connection
|
|
// was accepted. This short time is meant for the VERSION/VERACK exchange and the possible MNAUTH that might
|
|
// follow when the incoming connection is from another masternode. When a message other than MNAUTH
|
|
// is received after VERSION/VERACK, the protection is lifted immediately.
|
|
bool isProtected = GetTime<std::chrono::seconds>() - node->m_connected < INBOUND_EVICTION_PROTECTION_TIME;
|
|
if (node->nTimeFirstMessageReceived != 0 && !node->fFirstMessageIsMNAUTH) {
|
|
isProtected = false;
|
|
}
|
|
// if MNAUTH was valid, the node is always protected (and at the same time not accounted when
|
|
// checking incoming connection limits)
|
|
if (!node->GetVerifiedProRegTxHash().IsNull()) {
|
|
isProtected = true;
|
|
}
|
|
if (isProtected) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
NodeEvictionCandidate candidate = {node->GetId(), node->m_connected, node->m_min_ping_time,
|
|
node->m_last_block_time, node->m_last_tx_time,
|
|
HasAllDesirableServiceFlags(node->nServices),
|
|
node->m_relays_txs.load(), node->m_bloom_filter_loaded.load(),
|
|
node->nKeyedNetGroup, node->m_prefer_evict, node->addr.IsLocal(),
|
|
node->ConnectedThroughNetwork()};
|
|
vEvictionCandidates.push_back(candidate);
|
|
}
|
|
}
|
|
const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
|
|
if (!node_id_to_evict) {
|
|
return false;
|
|
}
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
if (pnode->GetId() == *node_id_to_evict) {
|
|
LogPrint(BCLog::NET_NETCONN, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AcceptConnection(const ListenSocket& hListenSocket, CMasternodeSync& mn_sync) {
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
|
|
CAddress addr;
|
|
|
|
if (!sock) {
|
|
const int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK) {
|
|
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
|
|
LogPrintf("Warning: Unknown socket family\n");
|
|
} else {
|
|
addr = CAddress{MaybeFlipIPv6toCJDNS(addr), NODE_NONE};
|
|
}
|
|
|
|
const CAddress addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock)), NODE_NONE};
|
|
|
|
NetPermissionFlags permissionFlags = NetPermissionFlags::None;
|
|
hListenSocket.AddSocketPermissionFlags(permissionFlags);
|
|
|
|
CreateNodeFromAcceptedSocket(std::move(sock), permissionFlags, addr_bind, addr, mn_sync);
|
|
}
|
|
|
|
void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
|
|
NetPermissionFlags permissionFlags,
|
|
const CAddress& addr_bind,
|
|
const CAddress& addr,
|
|
CMasternodeSync& mn_sync)
|
|
{
|
|
int nInbound = 0;
|
|
int nVerifiedInboundMasternodes = 0;
|
|
int nMaxInbound = nMaxConnections - m_max_outbound;
|
|
|
|
AddWhitelistPermissionFlags(permissionFlags, addr);
|
|
bool legacyWhitelisted = false;
|
|
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::Implicit)) {
|
|
NetPermissions::ClearFlag(permissionFlags, NetPermissionFlags::Implicit);
|
|
if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::ForceRelay);
|
|
if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::Relay);
|
|
NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::Mempool);
|
|
NetPermissions::AddFlag(permissionFlags, NetPermissionFlags::NoBan);
|
|
legacyWhitelisted = true;
|
|
}
|
|
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (pnode->IsInboundConn()) {
|
|
nInbound++;
|
|
if (!pnode->GetVerifiedProRegTxHash().IsNull()) {
|
|
nVerifiedInboundMasternodes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
std::string strDropped;
|
|
if (fLogIPs) {
|
|
strDropped = strprintf("connection from %s dropped", addr.ToString());
|
|
} else {
|
|
strDropped = "connection dropped";
|
|
}
|
|
|
|
if (!fNetworkActive) {
|
|
LogPrint(BCLog::NET_NETCONN, "%s: not accepting new connections\n", strDropped);
|
|
return;
|
|
}
|
|
|
|
if (!IsSelectableSocket(sock->Get()))
|
|
{
|
|
LogPrintf("%s: non-selectable socket\n", strDropped);
|
|
return;
|
|
}
|
|
|
|
// According to the internet TCP_NODELAY is not carried into accepted sockets
|
|
// on all platforms. Set it again here just to be sure.
|
|
const int on{1};
|
|
if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
|
|
LogPrint(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
|
|
addr.ToString());
|
|
}
|
|
|
|
// Don't accept connections from banned peers.
|
|
bool banned = m_banman && m_banman->IsBanned(addr);
|
|
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::NoBan) && banned)
|
|
{
|
|
LogPrint(BCLog::NET, "%s (banned)\n", strDropped);
|
|
return;
|
|
}
|
|
|
|
// Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
|
|
bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
|
|
if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::NoBan) && nInbound + 1 >= nMaxInbound && discouraged)
|
|
{
|
|
LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToString());
|
|
return;
|
|
}
|
|
|
|
// Evict connections until we are below nMaxInbound. In case eviction protection resulted in nodes to not be evicted
|
|
// before, they might get evicted in batches now (after the protection timeout).
|
|
// We don't evict verified MN connections and also don't take them into account when checking limits. We can do this
|
|
// because we know that such connections are naturally limited by the total number of MNs, so this is not usable
|
|
// for attacks.
|
|
while (nInbound - nVerifiedInboundMasternodes >= nMaxInbound)
|
|
{
|
|
if (!AttemptToEvictConnection()) {
|
|
// No connection to evict, disconnect the new connection
|
|
LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
|
|
return;
|
|
}
|
|
nInbound--;
|
|
}
|
|
|
|
// don't accept incoming connections until blockchain is synced
|
|
if (fMasternodeMode && !mn_sync.IsBlockchainSynced()) {
|
|
LogPrint(BCLog::NET, "AcceptConnection -- blockchain is not synced yet, skipping inbound connection attempt\n");
|
|
return;
|
|
}
|
|
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
|
|
ServiceFlags nodeServices = nLocalServices;
|
|
if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::BloomFilter)) {
|
|
nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
|
|
}
|
|
|
|
const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
|
|
CNode* pnode = new CNode(id,
|
|
nodeServices,
|
|
std::move(sock),
|
|
addr,
|
|
CalculateKeyedNetGroup(addr),
|
|
nonce,
|
|
addr_bind,
|
|
/*addrNameIn=*/"",
|
|
ConnectionType::INBOUND,
|
|
inbound_onion);
|
|
pnode->AddRef();
|
|
pnode->m_permissionFlags = permissionFlags;
|
|
// If this flag is present, the user probably expect that RPC and QT report it as whitelisted (backward compatibility)
|
|
pnode->m_legacyWhitelisted = legacyWhitelisted;
|
|
pnode->m_prefer_evict = discouraged;
|
|
m_msgproc->InitializeNode(pnode);
|
|
|
|
{
|
|
LOCK(pnode->m_sock_mutex);
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET_NETCONN, "connection from %s accepted, sock=%d, peer=%d\n", addr.ToString(), pnode->m_sock->Get(), pnode->GetId());
|
|
} else {
|
|
LogPrint(BCLog::NET_NETCONN, "connection accepted, sock=%d, peer=%d\n", pnode->m_sock->Get(), pnode->GetId());
|
|
}
|
|
}
|
|
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
m_nodes.push_back(pnode);
|
|
}
|
|
{
|
|
LOCK2(cs_mapSocketToNode, pnode->m_sock_mutex);
|
|
mapSocketToNode.emplace(pnode->m_sock->Get(), pnode);
|
|
if (m_edge_trig_events) {
|
|
if (!m_edge_trig_events->RegisterEvents(pnode->m_sock->Get())) {
|
|
LogPrint(BCLog::NET, "EdgeTriggeredEvents::RegisterEvents() failed\n");
|
|
}
|
|
}
|
|
if (m_wakeup_pipe) {
|
|
m_wakeup_pipe->Write();
|
|
}
|
|
}
|
|
|
|
// We received a new connection, harvest entropy from the time (and our peer count)
|
|
RandAddEvent((uint32_t)id);
|
|
}
|
|
|
|
bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type)
|
|
{
|
|
AssertLockNotHeld(m_unused_i2p_sessions_mutex);
|
|
std::optional<int> max_connections;
|
|
switch (conn_type) {
|
|
case ConnectionType::INBOUND:
|
|
case ConnectionType::MANUAL:
|
|
case ConnectionType::FEELER:
|
|
return false;
|
|
case ConnectionType::OUTBOUND_FULL_RELAY:
|
|
max_connections = m_max_outbound_full_relay;
|
|
break;
|
|
case ConnectionType::BLOCK_RELAY:
|
|
max_connections = m_max_outbound_block_relay;
|
|
break;
|
|
// no limit for ADDR_FETCH because -seednode has no limit either
|
|
case ConnectionType::ADDR_FETCH:
|
|
break;
|
|
} // no default case, so the compiler can warn about missing cases
|
|
|
|
// Count existing connections
|
|
int existing_connections = WITH_LOCK(m_nodes_mutex,
|
|
return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
|
|
|
|
// Max connections of specified type already exist
|
|
if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
|
|
|
|
// Max total outbound connections already exist
|
|
CSemaphoreGrant grant(*semOutbound, true);
|
|
if (!grant) return false;
|
|
|
|
OpenNetworkConnection(CAddress(), false, &grant, address.c_str(), conn_type);
|
|
return true;
|
|
}
|
|
|
|
void CConnman::DisconnectNodes()
|
|
{
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
|
|
if (!fNetworkActive) {
|
|
// Disconnect any connected nodes
|
|
for (CNode* pnode : m_nodes) {
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Disconnect unused nodes
|
|
for (auto it = m_nodes.begin(); it != m_nodes.end(); )
|
|
{
|
|
CNode* pnode = *it;
|
|
if (pnode->fDisconnect)
|
|
{
|
|
// If we were the ones who initiated the disconnect, we must assume that the other side wants to see
|
|
// pending messages. If the other side initiated the disconnect (or disconnected after we've shutdown
|
|
// the socket), we can be pretty sure that they are not interested in any pending messages anymore and
|
|
// thus can immediately close the socket.
|
|
if (!pnode->fOtherSideDisconnected) {
|
|
if (pnode->nDisconnectLingerTime == 0) {
|
|
// let's not immediately close the socket but instead wait for at least 100ms so that there is a
|
|
// chance to flush all/some pending data. Otherwise the other side might not receive REJECT messages
|
|
// that were pushed right before setting fDisconnect=true
|
|
// Flushing must happen in two places to ensure data can be received by the other side:
|
|
// 1. vSendMsg must be empty and all messages sent via send(). This is ensured by SocketHandler()
|
|
// being called before DisconnectNodes and also by the linger time
|
|
// 2. Internal socket send buffers must be flushed. This is ensured solely by the linger time
|
|
pnode->nDisconnectLingerTime = GetTimeMillis() + 100;
|
|
}
|
|
if (GetTimeMillis() < pnode->nDisconnectLingerTime) {
|
|
// everything flushed to the kernel?
|
|
if (!pnode->fSocketShutdown && pnode->nSendMsgSize == 0) {
|
|
LOCK(pnode->m_sock_mutex);
|
|
if (pnode->m_sock) {
|
|
// Give the other side a chance to detect the disconnect as early as possible (recv() will return 0)
|
|
::shutdown(pnode->m_sock->Get(), SD_SEND);
|
|
}
|
|
pnode->fSocketShutdown = true;
|
|
}
|
|
++it;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (fLogIPs) {
|
|
LogPrintf("ThreadSocketHandler -- removing node: peer=%d addr=%s nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n",
|
|
pnode->GetId(), pnode->addr.ToString(), pnode->GetRefCount(), pnode->IsInboundConn(), pnode->m_masternode_connection, pnode->m_masternode_iqr_connection);
|
|
} else {
|
|
LogPrintf("ThreadSocketHandler -- removing node: peer=%d nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n",
|
|
pnode->GetId(), pnode->GetRefCount(), pnode->IsInboundConn(), pnode->m_masternode_connection, pnode->m_masternode_iqr_connection);
|
|
}
|
|
|
|
// remove from m_nodes
|
|
it = m_nodes.erase(it);
|
|
|
|
// release outbound grant (if any)
|
|
pnode->grantOutbound.Release();
|
|
|
|
// close socket and cleanup
|
|
pnode->CloseSocketDisconnect(this);
|
|
|
|
// hold in disconnected pool until all refs are released
|
|
pnode->Release();
|
|
m_nodes_disconnected.push_back(pnode);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// Delete disconnected nodes
|
|
std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
|
|
for (auto it = m_nodes_disconnected.begin(); it != m_nodes_disconnected.end(); )
|
|
{
|
|
CNode* pnode = *it;
|
|
// wait until threads are done using it
|
|
bool fDelete = false;
|
|
if (pnode->GetRefCount() <= 0) {
|
|
{
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend) {
|
|
fDelete = true;
|
|
}
|
|
}
|
|
if (fDelete) {
|
|
it = m_nodes_disconnected.erase(it);
|
|
DeleteNode(pnode);
|
|
}
|
|
}
|
|
if (!fDelete) {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::NotifyNumConnectionsChanged(CMasternodeSync& mn_sync)
|
|
{
|
|
size_t nodes_size;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
nodes_size = m_nodes.size();
|
|
}
|
|
|
|
// If we had zero connections before and new connections now or if we just dropped
|
|
// to zero connections reset the sync process if its outdated.
|
|
if ((nodes_size > 0 && nPrevNodeCount == 0) || (nodes_size == 0 && nPrevNodeCount > 0)) {
|
|
mn_sync.Reset();
|
|
}
|
|
|
|
if(nodes_size != nPrevNodeCount) {
|
|
nPrevNodeCount = nodes_size;
|
|
if(clientInterface)
|
|
clientInterface->NotifyNumConnectionsChanged(nodes_size);
|
|
|
|
CalculateNumConnectionsChangedStats();
|
|
}
|
|
}
|
|
|
|
void CConnman::CalculateNumConnectionsChangedStats()
|
|
{
|
|
if (!gArgs.GetBoolArg("-statsenabled", DEFAULT_STATSD_ENABLE)) {
|
|
return;
|
|
}
|
|
|
|
// count various node attributes for statsD
|
|
int fullNodes = 0;
|
|
int spvNodes = 0;
|
|
int inboundNodes = 0;
|
|
int outboundNodes = 0;
|
|
int ipv4Nodes = 0;
|
|
int ipv6Nodes = 0;
|
|
int torNodes = 0;
|
|
mapMsgTypeSize mapRecvBytesMsgStats;
|
|
mapMsgTypeSize mapSentBytesMsgStats;
|
|
for (const std::string &msg : getAllNetMessageTypes()) {
|
|
mapRecvBytesMsgStats[msg] = 0;
|
|
mapSentBytesMsgStats[msg] = 0;
|
|
}
|
|
mapRecvBytesMsgStats[NET_MESSAGE_TYPE_OTHER] = 0;
|
|
mapSentBytesMsgStats[NET_MESSAGE_TYPE_OTHER] = 0;
|
|
const NodesSnapshot snap{*this, /* filter = */ CConnman::FullyConnectedOnly};
|
|
for (auto pnode : snap.Nodes()) {
|
|
{
|
|
LOCK(pnode->cs_vRecv);
|
|
for (const mapMsgTypeSize::value_type &i : pnode->mapRecvBytesPerMsgType)
|
|
mapRecvBytesMsgStats[i.first] += i.second;
|
|
}
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
for (const mapMsgTypeSize::value_type &i : pnode->mapSendBytesPerMsgType)
|
|
mapSentBytesMsgStats[i.first] += i.second;
|
|
}
|
|
if(pnode->fClient)
|
|
spvNodes++;
|
|
else
|
|
fullNodes++;
|
|
if(pnode->IsInboundConn())
|
|
inboundNodes++;
|
|
else
|
|
outboundNodes++;
|
|
if(pnode->addr.IsIPv4())
|
|
ipv4Nodes++;
|
|
if(pnode->addr.IsIPv6())
|
|
ipv6Nodes++;
|
|
if(pnode->addr.IsTor())
|
|
torNodes++;
|
|
const auto last_ping_time = count_microseconds(pnode->m_last_ping_time);
|
|
if (last_ping_time > 0)
|
|
statsClient.timing("peers.ping_us", last_ping_time, 1.0f);
|
|
}
|
|
for (const std::string &msg : getAllNetMessageTypes()) {
|
|
statsClient.gauge("bandwidth.message." + msg + ".totalBytesReceived", mapRecvBytesMsgStats[msg], 1.0f);
|
|
statsClient.gauge("bandwidth.message." + msg + ".totalBytesSent", mapSentBytesMsgStats[msg], 1.0f);
|
|
}
|
|
statsClient.gauge("peers.totalConnections", nPrevNodeCount, 1.0f);
|
|
statsClient.gauge("peers.spvNodeConnections", spvNodes, 1.0f);
|
|
statsClient.gauge("peers.fullNodeConnections", fullNodes, 1.0f);
|
|
statsClient.gauge("peers.inboundConnections", inboundNodes, 1.0f);
|
|
statsClient.gauge("peers.outboundConnections", outboundNodes, 1.0f);
|
|
statsClient.gauge("peers.ipv4Connections", ipv4Nodes, 1.0f);
|
|
statsClient.gauge("peers.ipv6Connections", ipv6Nodes, 1.0f);
|
|
statsClient.gauge("peers.torConnections", torNodes, 1.0f);
|
|
}
|
|
|
|
bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
|
|
{
|
|
return node.m_connected + m_peer_connect_timeout < now;
|
|
}
|
|
|
|
bool CConnman::InactivityCheck(const CNode& node) const
|
|
{
|
|
// Tests that see disconnects after using mocktime can start nodes with a
|
|
// large timeout. For example, -peertimeout=999999999.
|
|
const auto now{GetTime<std::chrono::seconds>()};
|
|
const auto last_send{node.m_last_send.load()};
|
|
const auto last_recv{node.m_last_recv.load()};
|
|
|
|
if (!ShouldRunInactivityChecks(node, now)) return false;
|
|
|
|
if (last_recv.count() == 0 || last_send.count() == 0) {
|
|
LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId());
|
|
return true;
|
|
}
|
|
|
|
if (now > last_send + TIMEOUT_INTERVAL) {
|
|
LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId());
|
|
return true;
|
|
}
|
|
|
|
if (now > last_recv + TIMEOUT_INTERVAL) {
|
|
LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId());
|
|
return true;
|
|
}
|
|
|
|
if (!node.fSuccessfullyConnected) {
|
|
LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::GenerateSelectSet(const std::vector<CNode*>& nodes,
|
|
std::set<SOCKET>& recv_set,
|
|
std::set<SOCKET>& send_set,
|
|
std::set<SOCKET>& error_set)
|
|
{
|
|
for (const ListenSocket& hListenSocket : vhListenSocket) {
|
|
recv_set.insert(hListenSocket.sock->Get());
|
|
}
|
|
|
|
for (CNode* pnode : nodes)
|
|
{
|
|
bool select_recv = !pnode->fHasRecvData;
|
|
bool select_send = !pnode->fCanSendData;
|
|
|
|
LOCK(pnode->m_sock_mutex);
|
|
if (!pnode->m_sock) {
|
|
continue;
|
|
}
|
|
|
|
error_set.insert(pnode->m_sock->Get());
|
|
if (select_send) {
|
|
send_set.insert(pnode->m_sock->Get());
|
|
}
|
|
if (select_recv) {
|
|
recv_set.insert(pnode->m_sock->Get());
|
|
}
|
|
}
|
|
|
|
if (m_wakeup_pipe) {
|
|
// We add a pipe to the read set so that the select() call can be woken up from the outside
|
|
// This is done when data is added to send buffers (vSendMsg) or when new peers are added
|
|
// This is currently only implemented for POSIX compliant systems. This means that Windows will fall back to
|
|
// timing out after 50ms and then trying to send. This is ok as we assume that heavy-load daemons are usually
|
|
// run on Linux and friends.
|
|
recv_set.insert(m_wakeup_pipe->m_pipe[0]);
|
|
}
|
|
|
|
return !recv_set.empty() || !send_set.empty() || !error_set.empty();
|
|
}
|
|
|
|
#ifdef USE_KQUEUE
|
|
void CConnman::SocketEventsKqueue(std::set<SOCKET>& recv_set,
|
|
std::set<SOCKET>& send_set,
|
|
std::set<SOCKET>& error_set,
|
|
bool only_poll)
|
|
{
|
|
const size_t maxEvents = 64;
|
|
struct kevent events[maxEvents];
|
|
|
|
struct timespec timeout;
|
|
timeout.tv_sec = only_poll ? 0 : SELECT_TIMEOUT_MILLISECONDS / 1000;
|
|
timeout.tv_nsec = (only_poll ? 0 : SELECT_TIMEOUT_MILLISECONDS % 1000) * 1000 * 1000;
|
|
|
|
int n{-1};
|
|
ToggleWakeupPipe([&](){n = kevent(Assert(m_edge_trig_events)->GetFileDescriptor(), nullptr, 0, events, maxEvents, &timeout);});
|
|
if (n == -1) {
|
|
LogPrintf("kevent wait error\n");
|
|
} else if (n > 0) {
|
|
for (int i = 0; i < n; i++) {
|
|
auto& event = events[i];
|
|
if ((event.flags & EV_ERROR) || (event.flags & EV_EOF)) {
|
|
error_set.insert((SOCKET)event.ident);
|
|
continue;
|
|
}
|
|
|
|
if (event.filter == EVFILT_READ) {
|
|
recv_set.insert((SOCKET)event.ident);
|
|
}
|
|
|
|
if (event.filter == EVFILT_WRITE) {
|
|
send_set.insert((SOCKET)event.ident);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_EPOLL
|
|
void CConnman::SocketEventsEpoll(std::set<SOCKET>& recv_set,
|
|
std::set<SOCKET>& send_set,
|
|
std::set<SOCKET>& error_set,
|
|
bool only_poll)
|
|
{
|
|
const size_t maxEvents = 64;
|
|
epoll_event events[maxEvents];
|
|
|
|
int n{-1};
|
|
ToggleWakeupPipe([&](){n = epoll_wait(Assert(m_edge_trig_events)->GetFileDescriptor(), events, maxEvents, only_poll ? 0 : SELECT_TIMEOUT_MILLISECONDS);});
|
|
for (int i = 0; i < n; i++) {
|
|
auto& e = events[i];
|
|
if((e.events & EPOLLERR) || (e.events & EPOLLHUP)) {
|
|
error_set.insert((SOCKET)e.data.fd);
|
|
continue;
|
|
}
|
|
|
|
if (e.events & EPOLLIN) {
|
|
recv_set.insert((SOCKET)e.data.fd);
|
|
}
|
|
|
|
if (e.events & EPOLLOUT) {
|
|
send_set.insert((SOCKET)e.data.fd);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_POLL
|
|
void CConnman::SocketEventsPoll(const std::vector<CNode*>& nodes,
|
|
std::set<SOCKET>& recv_set,
|
|
std::set<SOCKET>& send_set,
|
|
std::set<SOCKET>& error_set,
|
|
bool only_poll)
|
|
{
|
|
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
|
|
if (!GenerateSelectSet(nodes, recv_select_set, send_select_set, error_select_set)) {
|
|
if (!only_poll) interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
|
|
return;
|
|
}
|
|
|
|
std::unordered_map<SOCKET, struct pollfd> pollfds;
|
|
for (SOCKET socket_id : recv_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
pollfds[socket_id].events |= POLLIN;
|
|
}
|
|
|
|
for (SOCKET socket_id : send_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
pollfds[socket_id].events |= POLLOUT;
|
|
}
|
|
|
|
for (SOCKET socket_id : error_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
// These flags are ignored, but we set them for clarity
|
|
pollfds[socket_id].events |= POLLERR|POLLHUP;
|
|
}
|
|
|
|
std::vector<struct pollfd> vpollfds;
|
|
vpollfds.reserve(pollfds.size());
|
|
for (auto it : pollfds) {
|
|
vpollfds.push_back(std::move(it.second));
|
|
}
|
|
|
|
int r{-1};
|
|
ToggleWakeupPipe([&](){r = poll(vpollfds.data(), vpollfds.size(), only_poll ? 0 : SELECT_TIMEOUT_MILLISECONDS);});
|
|
if (r < 0) {
|
|
return;
|
|
}
|
|
|
|
if (interruptNet) return;
|
|
|
|
for (struct pollfd pollfd_entry : vpollfds) {
|
|
if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd);
|
|
if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd);
|
|
if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void CConnman::SocketEventsSelect(const std::vector<CNode*>& nodes,
|
|
std::set<SOCKET>& recv_set,
|
|
std::set<SOCKET>& send_set,
|
|
std::set<SOCKET>& error_set,
|
|
bool only_poll)
|
|
{
|
|
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
|
|
if (!GenerateSelectSet(nodes, recv_select_set, send_select_set, error_select_set)) {
|
|
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Find which sockets have data to receive
|
|
//
|
|
struct timeval timeout;
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_usec = only_poll ? 0 : SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend
|
|
|
|
fd_set fdsetRecv;
|
|
fd_set fdsetSend;
|
|
fd_set fdsetError;
|
|
FD_ZERO(&fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
SOCKET hSocketMax = 0;
|
|
|
|
for (SOCKET hSocket : recv_select_set) {
|
|
FD_SET(hSocket, &fdsetRecv);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
for (SOCKET hSocket : send_select_set) {
|
|
FD_SET(hSocket, &fdsetSend);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
for (SOCKET hSocket : error_select_set) {
|
|
FD_SET(hSocket, &fdsetError);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
int nSelect{-1};
|
|
ToggleWakeupPipe([&](){nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);});
|
|
if (interruptNet)
|
|
return;
|
|
|
|
if (nSelect == SOCKET_ERROR)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
|
|
for (unsigned int i = 0; i <= hSocketMax; i++)
|
|
FD_SET(i, &fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)))
|
|
return;
|
|
}
|
|
|
|
for (SOCKET hSocket : recv_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetRecv)) {
|
|
recv_set.insert(hSocket);
|
|
}
|
|
}
|
|
|
|
for (SOCKET hSocket : send_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetSend)) {
|
|
send_set.insert(hSocket);
|
|
}
|
|
}
|
|
|
|
for (SOCKET hSocket : error_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetError)) {
|
|
error_set.insert(hSocket);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::SocketEvents(const std::vector<CNode*>& nodes,
|
|
std::set<SOCKET>& recv_set,
|
|
std::set<SOCKET>& send_set,
|
|
std::set<SOCKET>& error_set,
|
|
bool only_poll)
|
|
{
|
|
switch (socketEventsMode) {
|
|
#ifdef USE_KQUEUE
|
|
case SocketEventsMode::KQueue:
|
|
SocketEventsKqueue(recv_set, send_set, error_set, only_poll);
|
|
break;
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
case SocketEventsMode::EPoll:
|
|
SocketEventsEpoll(recv_set, send_set, error_set, only_poll);
|
|
break;
|
|
#endif
|
|
#ifdef USE_POLL
|
|
case SocketEventsMode::Poll:
|
|
SocketEventsPoll(nodes, recv_set, send_set, error_set, only_poll);
|
|
break;
|
|
#endif
|
|
case SocketEventsMode::Select:
|
|
SocketEventsSelect(nodes, recv_set, send_set, error_set, only_poll);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
void CConnman::SocketHandler(CMasternodeSync& mn_sync)
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
|
|
std::set<SOCKET> recv_set;
|
|
std::set<SOCKET> send_set;
|
|
std::set<SOCKET> error_set;
|
|
|
|
bool only_poll = [this]() {
|
|
// Check if we have work to do and thus should avoid waiting for events
|
|
LOCK2(m_nodes_mutex, cs_sendable_receivable_nodes);
|
|
if (!mapReceivableNodes.empty()) {
|
|
return true;
|
|
} else if (!mapSendableNodes.empty()) {
|
|
if (LOCK(cs_mapNodesWithDataToSend); !mapNodesWithDataToSend.empty()) {
|
|
// We must check if at least one of the nodes with pending messages is also
|
|
// sendable, as otherwise a single node would be able to make the network
|
|
// thread busy with polling.
|
|
for (auto& p : mapNodesWithDataToSend) {
|
|
if (mapSendableNodes.count(p.first)) {
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}();
|
|
|
|
{
|
|
const NodesSnapshot snap{*this, /* filter = */ CConnman::AllNodes, /* shuffle = */ false};
|
|
|
|
// Check for the readiness of the already connected sockets and the
|
|
// listening sockets in one call ("readiness" as in poll(2) or
|
|
// select(2)). If none are ready, wait for a short while and return
|
|
// empty sets.
|
|
SocketEvents(snap.Nodes(), recv_set, send_set, error_set, only_poll);
|
|
|
|
// Drain the wakeup pipe
|
|
if (m_wakeup_pipe && recv_set.count(m_wakeup_pipe->m_pipe[0])) {
|
|
m_wakeup_pipe->Drain();
|
|
}
|
|
|
|
// Service (send/receive) each of the already connected nodes.
|
|
SocketHandlerConnected(recv_set, send_set, error_set);
|
|
}
|
|
|
|
// Accept new connections from listening sockets.
|
|
SocketHandlerListening(recv_set, mn_sync);
|
|
}
|
|
|
|
void CConnman::SocketHandlerConnected(const std::set<SOCKET>& recv_set,
|
|
const std::set<SOCKET>& send_set,
|
|
const std::set<SOCKET>& error_set)
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
|
|
if (interruptNet) return;
|
|
|
|
std::vector<CNode*> vErrorNodes;
|
|
std::vector<CNode*> vReceivableNodes;
|
|
std::vector<CNode*> vSendableNodes;
|
|
{
|
|
LOCK(cs_mapSocketToNode);
|
|
for (auto hSocket : error_set) {
|
|
auto it = mapSocketToNode.find(hSocket);
|
|
if (it == mapSocketToNode.end()) {
|
|
continue;
|
|
}
|
|
it->second->AddRef();
|
|
vErrorNodes.emplace_back(it->second);
|
|
}
|
|
for (auto hSocket : recv_set) {
|
|
if (error_set.count(hSocket)) {
|
|
// no need to handle it twice
|
|
continue;
|
|
}
|
|
|
|
auto it = mapSocketToNode.find(hSocket);
|
|
if (it == mapSocketToNode.end()) {
|
|
continue;
|
|
}
|
|
|
|
LOCK(cs_sendable_receivable_nodes);
|
|
auto jt = mapReceivableNodes.emplace(it->second->GetId(), it->second);
|
|
assert(jt.first->second == it->second);
|
|
it->second->fHasRecvData = true;
|
|
}
|
|
for (auto hSocket : send_set) {
|
|
auto it = mapSocketToNode.find(hSocket);
|
|
if (it == mapSocketToNode.end()) {
|
|
continue;
|
|
}
|
|
|
|
LOCK(cs_sendable_receivable_nodes);
|
|
auto jt = mapSendableNodes.emplace(it->second->GetId(), it->second);
|
|
assert(jt.first->second == it->second);
|
|
it->second->fCanSendData = true;
|
|
}
|
|
|
|
// collect nodes that have a receivable socket
|
|
// also clean up mapReceivableNodes from nodes that were receivable in the last iteration but aren't anymore
|
|
{
|
|
LOCK(cs_sendable_receivable_nodes);
|
|
|
|
vReceivableNodes.reserve(mapReceivableNodes.size());
|
|
for (auto it = mapReceivableNodes.begin(); it != mapReceivableNodes.end(); ) {
|
|
if (!it->second->fHasRecvData) {
|
|
it = mapReceivableNodes.erase(it);
|
|
} else {
|
|
// Implement the following logic:
|
|
// * If there is data to send, try sending data. As this only
|
|
// happens when optimistic write failed, we choose to first drain the
|
|
// write buffer in this case before receiving more. This avoids
|
|
// needlessly queueing received data, if the remote peer is not themselves
|
|
// receiving data. This means properly utilizing TCP flow control signalling.
|
|
// * Otherwise, if there is space left in the receive buffer (!fPauseRecv), try
|
|
// receiving data (which should succeed as the socket signalled as receivable).
|
|
if (!it->second->fPauseRecv && it->second->nSendMsgSize == 0 && !it->second->fDisconnect) {
|
|
it->second->AddRef();
|
|
vReceivableNodes.emplace_back(it->second);
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
// collect nodes that have data to send and have a socket with non-empty write buffers
|
|
// also clean up mapNodesWithDataToSend from nodes that had messages to send in the last iteration
|
|
// but don't have any in this iteration
|
|
LOCK(cs_mapNodesWithDataToSend);
|
|
vSendableNodes.reserve(mapNodesWithDataToSend.size());
|
|
for (auto it = mapNodesWithDataToSend.begin(); it != mapNodesWithDataToSend.end(); ) {
|
|
if (it->second->nSendMsgSize == 0) {
|
|
// See comment in PushMessage
|
|
it->second->Release();
|
|
it = mapNodesWithDataToSend.erase(it);
|
|
} else {
|
|
if (it->second->fCanSendData) {
|
|
it->second->AddRef();
|
|
vSendableNodes.emplace_back(it->second);
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (CNode* pnode : vErrorNodes)
|
|
{
|
|
if (interruptNet) {
|
|
break;
|
|
}
|
|
// let recv() return errors and then handle it
|
|
SocketRecvData(pnode);
|
|
}
|
|
|
|
for (CNode* pnode : vReceivableNodes)
|
|
{
|
|
if (interruptNet) {
|
|
break;
|
|
}
|
|
if (pnode->fPauseRecv) {
|
|
continue;
|
|
}
|
|
|
|
SocketRecvData(pnode);
|
|
}
|
|
|
|
for (CNode* pnode : vSendableNodes) {
|
|
if (interruptNet) {
|
|
break;
|
|
}
|
|
|
|
// Send data
|
|
size_t bytes_sent = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
|
|
if (bytes_sent) RecordBytesSent(bytes_sent);
|
|
}
|
|
|
|
for (auto& node : vErrorNodes) {
|
|
node->Release();
|
|
}
|
|
for (auto& node : vReceivableNodes) {
|
|
node->Release();
|
|
}
|
|
for (auto& node : vSendableNodes) {
|
|
node->Release();
|
|
}
|
|
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_sendable_receivable_nodes);
|
|
// remove nodes from mapSendableNodes, so that the next iteration knows that there is no work to do
|
|
// (even if there are pending messages to be sent)
|
|
for (auto it = mapSendableNodes.begin(); it != mapSendableNodes.end(); ) {
|
|
if (!it->second->fCanSendData) {
|
|
LogPrint(BCLog::NET, "%s -- remove mapSendableNodes, peer=%d\n", __func__, it->second->GetId());
|
|
it = mapSendableNodes.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::SocketHandlerListening(const std::set<SOCKET>& recv_set, CMasternodeSync& mn_sync)
|
|
{
|
|
for (const ListenSocket& listen_socket : vhListenSocket) {
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
if (recv_set.count(listen_socket.sock->Get()) > 0) {
|
|
AcceptConnection(listen_socket, mn_sync);
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t CConnman::SocketRecvData(CNode *pnode)
|
|
{
|
|
// typical socket buffer is 8K-64K
|
|
uint8_t pchBuf[0x10000];
|
|
int nBytes = 0;
|
|
{
|
|
LOCK(pnode->m_sock_mutex);
|
|
if (!pnode->m_sock)
|
|
return 0;
|
|
nBytes = recv(pnode->m_sock->Get(), (char*)pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
|
|
if (nBytes < (int)sizeof(pchBuf)) {
|
|
pnode->fHasRecvData = false;
|
|
}
|
|
}
|
|
if (nBytes > 0)
|
|
{
|
|
bool notify = false;
|
|
if (!pnode->ReceiveMsgBytes(Span<const uint8_t>(pchBuf, nBytes), notify)) {
|
|
LOCK(m_nodes_mutex);
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
RecordBytesRecv(nBytes);
|
|
if (notify) {
|
|
size_t nSizeAdded = 0;
|
|
auto it(pnode->vRecvMsg.begin());
|
|
for (; it != pnode->vRecvMsg.end(); ++it) {
|
|
// vRecvMsg contains only completed CNetMessage
|
|
// the single possible partially deserialized message are held by TransportDeserializer
|
|
nSizeAdded += it->m_raw_message_size;
|
|
}
|
|
{
|
|
LOCK(pnode->cs_vProcessMsg);
|
|
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
|
|
pnode->nProcessQueueSize += nSizeAdded;
|
|
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
|
|
}
|
|
WakeMessageHandler();
|
|
}
|
|
}
|
|
else if (nBytes == 0)
|
|
{
|
|
// socket closed gracefully
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId());
|
|
}
|
|
LOCK(m_nodes_mutex);
|
|
pnode->fOtherSideDisconnected = true; // avoid lingering
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
else if (nBytes < 0)
|
|
{
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
if (!pnode->fDisconnect){
|
|
LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr));
|
|
}
|
|
LOCK(m_nodes_mutex);
|
|
pnode->fOtherSideDisconnected = true; // avoid lingering
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
}
|
|
if (nBytes < 0) {
|
|
return 0;
|
|
}
|
|
return (size_t)nBytes;
|
|
}
|
|
|
|
void CConnman::ThreadSocketHandler(CMasternodeSync& mn_sync)
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
|
|
int64_t nLastCleanupNodes = 0;
|
|
|
|
while (!interruptNet)
|
|
{
|
|
// Handle sockets before we do the next round of disconnects. This allows us to flush send buffers one last time
|
|
// before actually closing sockets. Receiving is however skipped in case a peer is pending to be disconnected
|
|
SocketHandler(mn_sync);
|
|
if (GetTimeMillis() - nLastCleanupNodes > 1000) {
|
|
ForEachNode(AllNodes, [&](CNode* pnode) {
|
|
if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
|
|
});
|
|
nLastCleanupNodes = GetTimeMillis();
|
|
}
|
|
DisconnectNodes();
|
|
NotifyNumConnectionsChanged(mn_sync);
|
|
}
|
|
}
|
|
|
|
void CConnman::WakeMessageHandler()
|
|
{
|
|
{
|
|
LOCK(mutexMsgProc);
|
|
fMsgProcWake = true;
|
|
}
|
|
condMsgProc.notify_one();
|
|
}
|
|
|
|
void CConnman::ThreadDNSAddressSeed()
|
|
{
|
|
FastRandomContext rng;
|
|
std::vector<std::string> seeds = Params().DNSSeeds();
|
|
Shuffle(seeds.begin(), seeds.end(), rng);
|
|
int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
|
|
int found = 0;
|
|
|
|
if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
|
|
// When -forcednsseed is provided, query all.
|
|
seeds_right_now = seeds.size();
|
|
} else if (addrman.size() == 0) {
|
|
// If we have no known peers, query all.
|
|
// This will occur on the first run, or if peers.dat has been
|
|
// deleted.
|
|
seeds_right_now = seeds.size();
|
|
}
|
|
|
|
// goal: only query DNS seed if address need is acute
|
|
// * If we have a reasonable number of peers in addrman, spend
|
|
// some time trying them first. This improves user privacy by
|
|
// creating fewer identifying DNS requests, reduces trust by
|
|
// giving seeds less influence on the network topology, and
|
|
// reduces traffic to the seeds.
|
|
// * When querying DNS seeds query a few at once, this ensures
|
|
// that we don't give DNS seeds the ability to eclipse nodes
|
|
// that query them.
|
|
// * If we continue having problems, eventually query all the
|
|
// DNS seeds, and if that fails too, also try the fixed seeds.
|
|
// (done in ThreadOpenConnections)
|
|
const std::chrono::seconds seeds_wait_time = (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
|
|
|
|
for (const std::string& seed : seeds) {
|
|
if (seeds_right_now == 0) {
|
|
seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
|
|
|
|
if (addrman.size() > 0) {
|
|
LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
|
|
std::chrono::seconds to_wait = seeds_wait_time;
|
|
while (to_wait.count() > 0) {
|
|
// if sleeping for the MANY_PEERS interval, wake up
|
|
// early to see if we have enough peers and can stop
|
|
// this thread entirely freeing up its resources
|
|
std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
|
|
if (!interruptNet.sleep_for(w)) return;
|
|
to_wait -= w;
|
|
|
|
int nRelevant = 0;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (pnode->fSuccessfullyConnected && !pnode->IsFullOutboundConn() && !pnode->m_masternode_probe_connection) ++nRelevant;
|
|
}
|
|
}
|
|
if (nRelevant >= 2) {
|
|
if (found > 0) {
|
|
LogPrintf("%d addresses found from DNS seeds\n", found);
|
|
LogPrintf("P2P peers available. Finished DNS seeding.\n");
|
|
} else {
|
|
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (interruptNet) return;
|
|
|
|
// hold off on querying seeds if P2P network deactivated
|
|
if (!fNetworkActive) {
|
|
LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
|
|
do {
|
|
if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
|
|
} while (!fNetworkActive);
|
|
}
|
|
|
|
LogPrintf("Loading addresses from DNS seed %s\n", seed);
|
|
if (HaveNameProxy()) {
|
|
AddAddrFetch(seed);
|
|
} else {
|
|
std::vector<CNetAddr> vIPs;
|
|
std::vector<CAddress> vAdd;
|
|
ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
|
|
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
|
|
CNetAddr resolveSource;
|
|
if (!resolveSource.SetInternal(host)) {
|
|
continue;
|
|
}
|
|
unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
|
|
if (LookupHost(host, vIPs, nMaxIPs, true)) {
|
|
for (const CNetAddr& ip : vIPs) {
|
|
int nOneDay = 24*3600;
|
|
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
|
|
addr.nTime = GetTime() - 3*nOneDay - rng.randrange(4*nOneDay); // use a random age between 3 and 7 days old
|
|
vAdd.push_back(addr);
|
|
found++;
|
|
}
|
|
addrman.Add(vAdd, resolveSource);
|
|
} else {
|
|
// We now avoid directly using results from DNS Seeds which do not support service bit filtering,
|
|
// instead using them as a addrfetch to get nodes with our desired service bits.
|
|
AddAddrFetch(seed);
|
|
}
|
|
}
|
|
--seeds_right_now;
|
|
}
|
|
LogPrintf("%d addresses found from DNS seeds\n", found);
|
|
}
|
|
|
|
void CConnman::DumpAddresses()
|
|
{
|
|
int64_t nStart = GetTimeMillis();
|
|
|
|
DumpPeerAddresses(::gArgs, addrman);
|
|
|
|
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
|
|
addrman.size(), GetTimeMillis() - nStart);
|
|
}
|
|
|
|
void CConnman::ProcessAddrFetch()
|
|
{
|
|
AssertLockNotHeld(m_unused_i2p_sessions_mutex);
|
|
std::string strDest;
|
|
{
|
|
LOCK(m_addr_fetches_mutex);
|
|
if (m_addr_fetches.empty())
|
|
return;
|
|
strDest = m_addr_fetches.front();
|
|
m_addr_fetches.pop_front();
|
|
}
|
|
CAddress addr;
|
|
CSemaphoreGrant grant(*semOutbound, true);
|
|
if (grant) {
|
|
OpenNetworkConnection(addr, false, &grant, strDest.c_str(), ConnectionType::ADDR_FETCH);
|
|
}
|
|
}
|
|
|
|
bool CConnman::GetTryNewOutboundPeer() const
|
|
{
|
|
return m_try_another_outbound_peer;
|
|
}
|
|
|
|
void CConnman::SetTryNewOutboundPeer(bool flag)
|
|
{
|
|
m_try_another_outbound_peer = flag;
|
|
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false");
|
|
}
|
|
|
|
// Return the number of peers we have over our outbound connection limit
|
|
// Exclude peers that are marked for disconnect, or are going to be
|
|
// disconnected soon (eg ADDR_FETCH and FEELER)
|
|
// Also exclude peers that haven't finished initial connection handshake yet
|
|
// (so that we don't decide we're over our desired connection limit, and then
|
|
// evict some peer that has finished the handshake)
|
|
int CConnman::GetExtraFullOutboundCount() const
|
|
{
|
|
int full_outbound_peers = 0;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
// don't count outbound masternodes
|
|
if (pnode->m_masternode_connection) {
|
|
continue;
|
|
}
|
|
if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn() && !pnode->m_masternode_probe_connection) {
|
|
++full_outbound_peers;
|
|
}
|
|
}
|
|
}
|
|
return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
|
|
}
|
|
|
|
int CConnman::GetExtraBlockRelayCount() const
|
|
{
|
|
int block_relay_peers = 0;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
|
|
++block_relay_peers;
|
|
}
|
|
}
|
|
}
|
|
return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
|
|
}
|
|
|
|
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, CDeterministicMNManager& dmnman)
|
|
{
|
|
AssertLockNotHeld(m_unused_i2p_sessions_mutex);
|
|
FastRandomContext rng;
|
|
// Connect to specific addresses
|
|
if (!connect.empty())
|
|
{
|
|
for (int64_t nLoop = 0;; nLoop++)
|
|
{
|
|
ProcessAddrFetch();
|
|
for (const std::string& strAddr : connect)
|
|
{
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), ConnectionType::MANUAL);
|
|
for (int i = 0; i < 10 && i < nLoop; i++)
|
|
{
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Initiate network connections
|
|
auto start = GetTime<std::chrono::microseconds>();
|
|
|
|
// Minimum time before next feeler connection (in microseconds).
|
|
auto next_feeler = PoissonNextSend(start, FEELER_INTERVAL);
|
|
auto next_extra_block_relay = PoissonNextSend(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
|
|
const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
|
|
bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
|
|
|
|
if (!add_fixed_seeds) {
|
|
LogPrintf("Fixed seeds are disabled\n");
|
|
}
|
|
|
|
while (!interruptNet)
|
|
{
|
|
ProcessAddrFetch();
|
|
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
|
|
CSemaphoreGrant grant(*semOutbound);
|
|
if (interruptNet)
|
|
return;
|
|
|
|
if (add_fixed_seeds && addrman.size() == 0) {
|
|
// When the node starts with an empty peers.dat, there are a few other sources of peers before
|
|
// we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
|
|
// If none of those are available, we fallback on to fixed seeds immediately, else we allow
|
|
// 60 seconds for any of those sources to populate addrman.
|
|
bool add_fixed_seeds_now = false;
|
|
// It is cheapest to check if enough time has passed first.
|
|
if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
|
|
add_fixed_seeds_now = true;
|
|
LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty\n");
|
|
}
|
|
|
|
// Checking !dnsseed is cheaper before locking 2 mutexes.
|
|
if (!add_fixed_seeds_now && !dnsseed) {
|
|
LOCK2(m_addr_fetches_mutex, m_added_nodes_mutex);
|
|
if (m_addr_fetches.empty() && m_added_nodes.empty()) {
|
|
add_fixed_seeds_now = true;
|
|
LogPrintf("Adding fixed seeds as -dnsseed=0, -addnode is not provided and all -seednode(s) attempted\n");
|
|
}
|
|
}
|
|
|
|
if (add_fixed_seeds_now) {
|
|
CNetAddr local;
|
|
local.SetInternal("fixedseeds");
|
|
addrman.Add(ConvertSeeds(Params().FixedSeeds()), local);
|
|
add_fixed_seeds = false;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Choose an address to connect to based on most recently seen
|
|
//
|
|
CAddress addrConnect;
|
|
|
|
// Only connect out to one peer per network group (/16 for IPv4).
|
|
// This is only done for mainnet and testnet
|
|
int nOutboundFullRelay = 0;
|
|
int nOutboundBlockRelay = 0;
|
|
std::set<std::vector<unsigned char> > setConnected;
|
|
if (!Params().AllowMultipleAddressesFromGroup()) {
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (pnode->IsFullOutboundConn() && !pnode->m_masternode_connection) nOutboundFullRelay++;
|
|
if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
|
|
|
|
// Netgroups for inbound and manual peers are not excluded because our goal here
|
|
// is to not use multiple of our limited outbound slots on a single netgroup
|
|
// but inbound and manual peers do not use our outbound slots. Inbound peers
|
|
// also have the added issue that they could be attacker controlled and used
|
|
// to prevent us from connecting to particular hosts if we used them here.
|
|
switch (pnode->m_conn_type) {
|
|
case ConnectionType::INBOUND:
|
|
case ConnectionType::MANUAL:
|
|
break;
|
|
case ConnectionType::OUTBOUND_FULL_RELAY:
|
|
case ConnectionType::BLOCK_RELAY:
|
|
case ConnectionType::ADDR_FETCH:
|
|
case ConnectionType::FEELER:
|
|
setConnected.insert(pnode->addr.GetGroup(addrman.GetAsmap()));
|
|
} // no default case, so the compiler can warn about missing cases
|
|
}
|
|
}
|
|
|
|
std::set<uint256> setConnectedMasternodes;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
|
|
if (!verifiedProRegTxHash.IsNull()) {
|
|
setConnectedMasternodes.emplace(verifiedProRegTxHash);
|
|
}
|
|
}
|
|
}
|
|
|
|
ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
|
|
auto now = GetTime<std::chrono::microseconds>();
|
|
bool anchor = false;
|
|
bool fFeeler = false;
|
|
|
|
// Determine what type of connection to open. Opening
|
|
// BLOCK_RELAY connections to addresses from anchors.dat gets the highest
|
|
// priority. Then we open OUTBOUND_FULL_RELAY priority until we
|
|
// meet our full-relay capacity. Then we open BLOCK_RELAY connection
|
|
// until we hit our block-relay-only peer limit.
|
|
// GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
|
|
// try opening an additional OUTBOUND_FULL_RELAY connection. If none of
|
|
// these conditions are met, check to see if it's time to try an extra
|
|
// block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
|
|
// timer to decide if we should open a FEELER.
|
|
|
|
if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
|
|
conn_type = ConnectionType::BLOCK_RELAY;
|
|
anchor = true;
|
|
} else if (nOutboundFullRelay < m_max_outbound_full_relay) {
|
|
// OUTBOUND_FULL_RELAY
|
|
} else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
|
|
conn_type = ConnectionType::BLOCK_RELAY;
|
|
} else if (GetTryNewOutboundPeer()) {
|
|
// OUTBOUND_FULL_RELAY
|
|
} else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
|
|
// Periodically connect to a peer (using regular outbound selection
|
|
// methodology from addrman) and stay connected long enough to sync
|
|
// headers, but not much else.
|
|
//
|
|
// Then disconnect the peer, if we haven't learned anything new.
|
|
//
|
|
// The idea is to make eclipse attacks very difficult to pull off,
|
|
// because every few minutes we're finding a new peer to learn headers
|
|
// from.
|
|
//
|
|
// This is similar to the logic for trying extra outbound (full-relay)
|
|
// peers, except:
|
|
// - we do this all the time on a poisson timer, rather than just when
|
|
// our tip is stale
|
|
// - we potentially disconnect our next-youngest block-relay-only peer, if our
|
|
// newest block-relay-only peer delivers a block more recently.
|
|
// See the eviction logic in net_processing.cpp.
|
|
//
|
|
// Because we can promote these connections to block-relay-only
|
|
// connections, they do not get their own ConnectionType enum
|
|
// (similar to how we deal with extra outbound peers).
|
|
next_extra_block_relay = PoissonNextSend(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
|
|
conn_type = ConnectionType::BLOCK_RELAY;
|
|
} else if (now > next_feeler) {
|
|
next_feeler = PoissonNextSend(now, FEELER_INTERVAL);
|
|
conn_type = ConnectionType::FEELER;
|
|
fFeeler = true;
|
|
} else {
|
|
// skip to next iteration of while loop
|
|
continue;
|
|
}
|
|
|
|
addrman.ResolveCollisions();
|
|
|
|
auto mnList = dmnman.GetListAtChainTip();
|
|
|
|
int64_t nANow = GetAdjustedTime();
|
|
int nTries = 0;
|
|
while (!interruptNet)
|
|
{
|
|
if (anchor && !m_anchors.empty()) {
|
|
const CAddress addr = m_anchors.back();
|
|
m_anchors.pop_back();
|
|
if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) ||
|
|
!HasAllDesirableServiceFlags(addr.nServices) ||
|
|
setConnected.count(addr.GetGroup(addrman.GetAsmap()))) continue;
|
|
addrConnect = addr;
|
|
LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToString());
|
|
break;
|
|
}
|
|
|
|
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
|
|
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
|
|
// already-connected network ranges, ...) before trying new addrman addresses.
|
|
nTries++;
|
|
if (nTries > 100)
|
|
break;
|
|
|
|
CAddress addr;
|
|
int64_t addr_last_try{0};
|
|
|
|
if (fFeeler) {
|
|
// First, try to get a tried table collision address. This returns
|
|
// an empty (invalid) address if there are no collisions to try.
|
|
std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
|
|
|
|
if (!addr.IsValid()) {
|
|
// No tried table collisions. Select a new table address
|
|
// for our feeler.
|
|
std::tie(addr, addr_last_try) = addrman.Select(true);
|
|
} else if (AlreadyConnectedToAddress(addr)) {
|
|
// If test-before-evict logic would have us connect to a
|
|
// peer that we're already connected to, just mark that
|
|
// address as Good(). We won't be able to initiate the
|
|
// connection anyway, so this avoids inadvertently evicting
|
|
// a currently-connected peer.
|
|
addrman.Good(addr);
|
|
// Select a new table address for our feeler instead.
|
|
std::tie(addr, addr_last_try) = addrman.Select(true);
|
|
}
|
|
} else {
|
|
// Not a feeler
|
|
std::tie(addr, addr_last_try) = addrman.Select();
|
|
}
|
|
|
|
auto dmn = mnList.GetMNByService(addr);
|
|
bool isMasternode = dmn != nullptr;
|
|
|
|
// Require outbound connections, other than feelers, to be to distinct network groups
|
|
if (!fFeeler && setConnected.count(addr.GetGroup(addrman.GetAsmap()))) {
|
|
break;
|
|
}
|
|
|
|
// if we selected an invalid address, restart
|
|
if (!addr.IsValid() || setConnected.count(addr.GetGroup(addrman.GetAsmap())))
|
|
break;
|
|
|
|
// don't try to connect to masternodes that we already have a connection to (most likely inbound)
|
|
if (isMasternode && setConnectedMasternodes.count(dmn->proTxHash))
|
|
break;
|
|
|
|
// if we selected a local address, restart (local addresses are allowed in regtest and devnet)
|
|
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
|
|
if (!fAllowLocal && IsLocal(addrConnect)) {
|
|
break;
|
|
}
|
|
|
|
if (!IsReachable(addr))
|
|
continue;
|
|
|
|
// only consider very recently tried nodes after 30 failed attempts
|
|
if (nANow - addr_last_try < 600 && nTries < 30)
|
|
continue;
|
|
|
|
// for non-feelers, require all the services we'll want,
|
|
// for feelers, only require they be a full node (only because most
|
|
// SPV clients don't have a good address DB available)
|
|
if (!isMasternode && !fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
|
|
continue;
|
|
} else if (!isMasternode && fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
|
|
continue;
|
|
}
|
|
|
|
// Do not allow non-default ports, unless after 50 invalid
|
|
// addresses selected already. This is to prevent malicious peers
|
|
// from advertising themselves as a service on another host and
|
|
// port, causing a DoS attack as nodes around the network attempt
|
|
// to connect to it fruitlessly.
|
|
if ((!isMasternode || !Params().AllowMultiplePorts()) && addr.GetPort() != Params().GetDefaultPort(addr.GetNetwork()) && addr.GetPort() != GetListenPort() && nTries < 50) {
|
|
continue;
|
|
}
|
|
|
|
addrConnect = addr;
|
|
break;
|
|
}
|
|
|
|
if (addrConnect.IsValid()) {
|
|
if (fFeeler) {
|
|
// Add small amount of random noise before connection to avoid synchronization.
|
|
if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
|
|
return;
|
|
}
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
|
|
} else {
|
|
LogPrint(BCLog::NET, "Making feeler connection\n");
|
|
}
|
|
}
|
|
|
|
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, conn_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
|
|
{
|
|
std::vector<CAddress> ret;
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (pnode->IsBlockRelayOnly()) {
|
|
ret.push_back(pnode->addr);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() const
|
|
{
|
|
std::vector<AddedNodeInfo> ret;
|
|
|
|
std::list<std::string> lAddresses(0);
|
|
{
|
|
LOCK(m_added_nodes_mutex);
|
|
ret.reserve(m_added_nodes.size());
|
|
std::copy(m_added_nodes.cbegin(), m_added_nodes.cend(), std::back_inserter(lAddresses));
|
|
}
|
|
|
|
|
|
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
|
|
std::map<CService, bool> mapConnected;
|
|
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for (const CNode* pnode : m_nodes) {
|
|
if (pnode->addr.IsValid()) {
|
|
mapConnected[pnode->addr] = pnode->IsInboundConn();
|
|
}
|
|
std::string addrName{pnode->m_addr_name};
|
|
if (!addrName.empty()) {
|
|
mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const std::string& strAddNode : lAddresses) {
|
|
CService service(LookupNumeric(strAddNode, Params().GetDefaultPort(strAddNode)));
|
|
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
|
|
if (service.IsValid()) {
|
|
// strAddNode is an IP:port
|
|
auto it = mapConnected.find(service);
|
|
if (it != mapConnected.end()) {
|
|
addedNode.resolvedAddress = service;
|
|
addedNode.fConnected = true;
|
|
addedNode.fInbound = it->second;
|
|
}
|
|
} else {
|
|
// strAddNode is a name
|
|
auto it = mapConnectedByName.find(strAddNode);
|
|
if (it != mapConnectedByName.end()) {
|
|
addedNode.resolvedAddress = it->second.second;
|
|
addedNode.fConnected = true;
|
|
addedNode.fInbound = it->second.first;
|
|
}
|
|
}
|
|
ret.emplace_back(std::move(addedNode));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void CConnman::ThreadOpenAddedConnections()
|
|
{
|
|
AssertLockNotHeld(m_unused_i2p_sessions_mutex);
|
|
while (true)
|
|
{
|
|
CSemaphoreGrant grant(*semAddnode);
|
|
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
|
|
bool tried = false;
|
|
for (const AddedNodeInfo& info : vInfo) {
|
|
if (!info.fConnected) {
|
|
if (!grant.TryAcquire()) {
|
|
// If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
|
|
// the addednodeinfo state might change.
|
|
break;
|
|
}
|
|
tried = true;
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), ConnectionType::MANUAL);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
// Retry every 60 seconds if a connection was attempted, otherwise two seconds
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadOpenMasternodeConnections(CDeterministicMNManager& dmnman, CMasternodeMetaMan& mn_metaman,
|
|
CMasternodeSync& mn_sync)
|
|
{
|
|
// Connecting to specific addresses, no masternode connections available
|
|
if (gArgs.IsArgSet("-connect") && gArgs.GetArgs("-connect").size() > 0)
|
|
return;
|
|
|
|
auto& chainParams = Params();
|
|
|
|
bool didConnect = false;
|
|
while (!interruptNet)
|
|
{
|
|
auto sleepTime = std::chrono::milliseconds(1000);
|
|
if (didConnect) {
|
|
sleepTime = std::chrono::milliseconds(100);
|
|
}
|
|
if (!interruptNet.sleep_for(sleepTime))
|
|
return;
|
|
|
|
didConnect = false;
|
|
|
|
if (!fNetworkActive || !mn_sync.IsBlockchainSynced())
|
|
continue;
|
|
|
|
std::set<CService> connectedNodes;
|
|
std::map<uint256 /*proTxHash*/, bool /*fInbound*/> connectedProRegTxHashes;
|
|
ForEachNode([&](const CNode* pnode) {
|
|
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
|
|
connectedNodes.emplace(pnode->addr);
|
|
if (!verifiedProRegTxHash.IsNull()) {
|
|
connectedProRegTxHashes.emplace(verifiedProRegTxHash, pnode->IsInboundConn());
|
|
}
|
|
});
|
|
|
|
auto mnList = dmnman.GetListAtChainTip();
|
|
|
|
if (interruptNet)
|
|
return;
|
|
|
|
int64_t nANow = GetTime<std::chrono::seconds>().count();
|
|
constexpr const auto &_func_ = __func__;
|
|
|
|
// NOTE: Process only one pending masternode at a time
|
|
|
|
MasternodeProbeConn isProbe = MasternodeProbeConn::IsNotConnection;
|
|
|
|
const auto getPendingQuorumNodes = [&]() {
|
|
LockAssertion lock(cs_vPendingMasternodes);
|
|
std::vector<CDeterministicMNCPtr> ret;
|
|
for (const auto& group : masternodeQuorumNodes) {
|
|
for (const auto& proRegTxHash : group.second) {
|
|
auto dmn = mnList.GetMN(proRegTxHash);
|
|
if (!dmn) {
|
|
continue;
|
|
}
|
|
const auto& addr2 = dmn->pdmnState->addr;
|
|
if (connectedNodes.count(addr2) && !connectedProRegTxHashes.count(proRegTxHash)) {
|
|
// we probably connected to it before it became a masternode
|
|
// or maybe we are still waiting for mnauth
|
|
(void)ForNode(addr2, [&](CNode* pnode) {
|
|
if (pnode->nTimeFirstMessageReceived != 0 && GetTimeSeconds() - pnode->nTimeFirstMessageReceived > 5) {
|
|
// clearly not expecting mnauth to take that long even if it wasn't the first message
|
|
// we received (as it should normally), disconnect
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- dropping non-mnauth connection to %s, service=%s\n", _func_, proRegTxHash.ToString(), addr2.ToString());
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
// either way - it's not ready, skip it for now
|
|
continue;
|
|
}
|
|
if (!connectedNodes.count(addr2) && !IsMasternodeOrDisconnectRequested(addr2) && !connectedProRegTxHashes.count(proRegTxHash)) {
|
|
int64_t lastAttempt = mn_metaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt();
|
|
// back off trying connecting to an address if we already tried recently
|
|
if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) {
|
|
continue;
|
|
}
|
|
ret.emplace_back(dmn);
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
};
|
|
|
|
const auto getPendingProbes = [&]() {
|
|
LockAssertion lock(cs_vPendingMasternodes);
|
|
std::vector<CDeterministicMNCPtr> ret;
|
|
for (auto it = masternodePendingProbes.begin(); it != masternodePendingProbes.end(); ) {
|
|
auto dmn = mnList.GetMN(*it);
|
|
if (!dmn) {
|
|
it = masternodePendingProbes.erase(it);
|
|
continue;
|
|
}
|
|
bool connectedAndOutbound = connectedProRegTxHashes.count(dmn->proTxHash) && !connectedProRegTxHashes[dmn->proTxHash];
|
|
if (connectedAndOutbound) {
|
|
// we already have an outbound connection to this MN so there is no theed to probe it again
|
|
mn_metaman.GetMetaInfo(dmn->proTxHash)->SetLastOutboundSuccess(nANow);
|
|
it = masternodePendingProbes.erase(it);
|
|
continue;
|
|
}
|
|
|
|
++it;
|
|
|
|
int64_t lastAttempt = mn_metaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt();
|
|
// back off trying connecting to an address if we already tried recently
|
|
if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) {
|
|
continue;
|
|
}
|
|
ret.emplace_back(dmn);
|
|
}
|
|
return ret;
|
|
};
|
|
|
|
auto getConnectToDmn = [&]() -> CDeterministicMNCPtr {
|
|
// don't hold lock while calling OpenMasternodeConnection as cs_main is locked deep inside
|
|
LOCK2(m_nodes_mutex, cs_vPendingMasternodes);
|
|
|
|
if (!vPendingMasternodes.empty()) {
|
|
auto dmn = mnList.GetValidMN(vPendingMasternodes.front());
|
|
vPendingMasternodes.erase(vPendingMasternodes.begin());
|
|
if (dmn && !connectedNodes.count(dmn->pdmnState->addr) && !IsMasternodeOrDisconnectRequested(dmn->pdmnState->addr)) {
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening pending masternode connection to %s, service=%s\n", _func_, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString());
|
|
return dmn;
|
|
}
|
|
}
|
|
|
|
if (const auto pending = getPendingQuorumNodes(); !pending.empty()) {
|
|
// not-null
|
|
auto dmn = pending[GetRand(pending.size())];
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening quorum connection to %s, service=%s\n",
|
|
_func_, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString());
|
|
return dmn;
|
|
}
|
|
|
|
if (const auto pending = getPendingProbes(); !pending.empty()) {
|
|
// not-null
|
|
auto dmn = pending[GetRand(pending.size())];
|
|
masternodePendingProbes.erase(dmn->proTxHash);
|
|
isProbe = MasternodeProbeConn::IsConnection;
|
|
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- probing masternode %s, service=%s\n", _func_, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString());
|
|
return dmn;
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
CDeterministicMNCPtr connectToDmn = getConnectToDmn();
|
|
|
|
if (connectToDmn == nullptr) {
|
|
continue;
|
|
}
|
|
|
|
didConnect = true;
|
|
|
|
mn_metaman.GetMetaInfo(connectToDmn->proTxHash)->SetLastOutboundAttempt(nANow);
|
|
|
|
OpenMasternodeConnection(CAddress(connectToDmn->pdmnState->addr, NODE_NETWORK), isProbe);
|
|
// should be in the list now if connection was opened
|
|
bool connected = ForNode(connectToDmn->pdmnState->addr, CConnman::AllNodes, [&](CNode* pnode) {
|
|
if (pnode->fDisconnect) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
if (!connected) {
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connection failed for masternode %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString());
|
|
// Will take a few consequent failed attempts to PoSe-punish a MN.
|
|
if (mn_metaman.GetMetaInfo(connectToDmn->proTxHash)->OutboundFailedTooManyTimes()) {
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- failed to connect to masternode %s too many times\n", __func__, connectToDmn->proTxHash.ToString());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if successful, this moves the passed grant to the constructed node
|
|
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, ConnectionType conn_type, MasternodeConn masternode_connection, MasternodeProbeConn masternode_probe_connection)
|
|
{
|
|
AssertLockNotHeld(m_unused_i2p_sessions_mutex);
|
|
assert(conn_type != ConnectionType::INBOUND);
|
|
|
|
//
|
|
// Initiate outbound network connection
|
|
//
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
if (!fNetworkActive) {
|
|
return;
|
|
}
|
|
|
|
auto getIpStr = [&]() {
|
|
if (fLogIPs) {
|
|
return addrConnect.ToString();
|
|
} else {
|
|
return std::string("new peer");
|
|
}
|
|
};
|
|
|
|
if (!pszDest) {
|
|
// banned, discouraged or exact match?
|
|
if ((m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect))) || AlreadyConnectedToAddress(addrConnect))
|
|
return;
|
|
// local and not a connection to itself?
|
|
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
|
|
if (!fAllowLocal && IsLocal(addrConnect))
|
|
return;
|
|
// Search for IP:PORT match:
|
|
// - if multiple ports for the same IP are allowed,
|
|
// - for probe connections
|
|
// Search for IP-only match otherwise
|
|
bool searchIPPort = Params().AllowMultiplePorts() || masternode_probe_connection == MasternodeProbeConn::IsConnection;
|
|
bool skip = searchIPPort ?
|
|
FindNode(static_cast<CService>(addrConnect)) :
|
|
FindNode(static_cast<CNetAddr>(addrConnect));
|
|
if (skip) {
|
|
LogPrintf("CConnman::%s -- Failed to open new connection to %s, already connected\n", __func__, getIpStr());
|
|
return;
|
|
}
|
|
} else if (FindNode(std::string(pszDest)))
|
|
return;
|
|
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connecting to %s\n", __func__, getIpStr());
|
|
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
|
|
|
|
if (!pnode) {
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- ConnectNode failed for %s\n", __func__, getIpStr());
|
|
return;
|
|
}
|
|
|
|
{
|
|
LOCK(pnode->m_sock_mutex);
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- successfully connected to %s, sock=%d, peer=%d\n", __func__, getIpStr(), pnode->m_sock->Get(), pnode->GetId());
|
|
}
|
|
|
|
if (grantOutbound)
|
|
grantOutbound->MoveTo(pnode->grantOutbound);
|
|
|
|
if (masternode_connection == MasternodeConn::IsConnection)
|
|
pnode->m_masternode_connection = true;
|
|
if (masternode_probe_connection == MasternodeProbeConn::IsConnection)
|
|
pnode->m_masternode_probe_connection = true;
|
|
|
|
{
|
|
LOCK2(cs_mapSocketToNode, pnode->m_sock_mutex);
|
|
mapSocketToNode.emplace(pnode->m_sock->Get(), pnode);
|
|
}
|
|
|
|
m_msgproc->InitializeNode(pnode);
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
m_nodes.push_back(pnode);
|
|
}
|
|
{
|
|
if (m_edge_trig_events) {
|
|
LOCK(pnode->m_sock_mutex);
|
|
if (!m_edge_trig_events->RegisterEvents(pnode->m_sock->Get())) {
|
|
LogPrint(BCLog::NET, "EdgeTriggeredEvents::RegisterEvents() failed\n");
|
|
}
|
|
}
|
|
if (m_wakeup_pipe) {
|
|
m_wakeup_pipe->Write();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::OpenMasternodeConnection(const CAddress &addrConnect, MasternodeProbeConn probe) {
|
|
OpenNetworkConnection(addrConnect, false, nullptr, nullptr, ConnectionType::OUTBOUND_FULL_RELAY, MasternodeConn::IsConnection, probe);
|
|
}
|
|
|
|
void CConnman::ThreadMessageHandler()
|
|
{
|
|
int64_t nLastSendMessagesTimeMasternodes = 0;
|
|
|
|
FastRandomContext rng;
|
|
while (!flagInterruptMsgProc)
|
|
{
|
|
bool fMoreWork = false;
|
|
|
|
bool fSkipSendMessagesForMasternodes = true;
|
|
if (GetTimeMillis() - nLastSendMessagesTimeMasternodes >= 100) {
|
|
fSkipSendMessagesForMasternodes = false;
|
|
nLastSendMessagesTimeMasternodes = GetTimeMillis();
|
|
}
|
|
|
|
// Randomize the order in which we process messages from/to our peers.
|
|
// This prevents attacks in which an attacker exploits having multiple
|
|
// consecutive connections in the m_nodes list.
|
|
const NodesSnapshot snap{*this, /* filter = */ CConnman::AllNodes, /* shuffle = */ true};
|
|
|
|
for (CNode* pnode : snap.Nodes()) {
|
|
if (pnode->fDisconnect)
|
|
continue;
|
|
|
|
// Receive messages
|
|
bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
|
|
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
// Send messages
|
|
if (!fSkipSendMessagesForMasternodes || !pnode->m_masternode_connection) {
|
|
LOCK(pnode->cs_sendProcessing);
|
|
m_msgproc->SendMessages(pnode);
|
|
}
|
|
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
}
|
|
|
|
WAIT_LOCK(mutexMsgProc, lock);
|
|
if (!fMoreWork) {
|
|
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
|
|
}
|
|
fMsgProcWake = false;
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadI2PAcceptIncoming(CMasternodeSync& mn_sync)
|
|
{
|
|
static constexpr auto err_wait_begin = 1s;
|
|
static constexpr auto err_wait_cap = 5min;
|
|
auto err_wait = err_wait_begin;
|
|
|
|
bool advertising_listen_addr = false;
|
|
i2p::Connection conn;
|
|
|
|
while (!interruptNet) {
|
|
|
|
if (!m_i2p_sam_session->Listen(conn)) {
|
|
if (advertising_listen_addr && conn.me.IsValid()) {
|
|
RemoveLocal(conn.me);
|
|
advertising_listen_addr = false;
|
|
}
|
|
|
|
interruptNet.sleep_for(err_wait);
|
|
if (err_wait < err_wait_cap) {
|
|
err_wait *= 2;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (!advertising_listen_addr) {
|
|
AddLocal(conn.me, LOCAL_MANUAL);
|
|
advertising_listen_addr = true;
|
|
}
|
|
|
|
if (!m_i2p_sam_session->Accept(conn)) {
|
|
continue;
|
|
}
|
|
|
|
CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None,
|
|
CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE}, mn_sync);
|
|
}
|
|
}
|
|
|
|
bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
|
|
{
|
|
int nOne = 1;
|
|
|
|
// Create socket for listening for incoming connections
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
|
|
{
|
|
strError = strprintf(Untranslated("Error: Bind address family for %s not supported"), addrBind.ToString());
|
|
LogPrintf("%s\n", strError.original);
|
|
return false;
|
|
}
|
|
|
|
std::unique_ptr<Sock> sock = CreateSock(addrBind);
|
|
if (!sock) {
|
|
strError = strprintf(Untranslated("Error: Couldn't open socket for incoming connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError.original);
|
|
return false;
|
|
}
|
|
|
|
// Allow binding if the port is still in TIME_WAIT state after
|
|
// the program was closed and restarted.
|
|
if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
|
|
strError = strprintf(Untranslated("Error setting SO_REUSEADDR on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError.original);
|
|
}
|
|
|
|
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
|
|
// and enable it by default or not. Try to enable it, if possible.
|
|
if (addrBind.IsIPv6()) {
|
|
#ifdef IPV6_V6ONLY
|
|
if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
|
|
strError = strprintf(Untranslated("Error setting IPV6_V6ONLY on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError.original);
|
|
}
|
|
#endif
|
|
#ifdef WIN32
|
|
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
|
|
if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
|
|
strError = strprintf(Untranslated("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError.original);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
|
|
int nErr = WSAGetLastError();
|
|
if (nErr == WSAEADDRINUSE)
|
|
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), PACKAGE_NAME);
|
|
else
|
|
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
|
|
LogPrintf("%s\n", strError.original);
|
|
return false;
|
|
}
|
|
LogPrintf("Bound to %s\n", addrBind.ToString());
|
|
|
|
// Listen for incoming connections
|
|
if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
|
|
{
|
|
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError.original);
|
|
return false;
|
|
}
|
|
|
|
if (m_edge_trig_events && !m_edge_trig_events->AddSocket(sock->Get())) {
|
|
LogPrintf("Error: EdgeTriggeredEvents::AddSocket() failed\n");
|
|
return false;
|
|
}
|
|
|
|
vhListenSocket.emplace_back(std::move(sock), permissions);
|
|
|
|
return true;
|
|
}
|
|
|
|
void Discover()
|
|
{
|
|
if (!fDiscover)
|
|
return;
|
|
|
|
#ifdef WIN32
|
|
// Get local host IP
|
|
char pszHostName[256] = "";
|
|
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
|
|
{
|
|
std::vector<CNetAddr> vaddr;
|
|
if (LookupHost(pszHostName, vaddr, 0, true))
|
|
{
|
|
for (const CNetAddr &addr : vaddr)
|
|
{
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
|
|
}
|
|
}
|
|
}
|
|
#elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
|
|
// Get local host ip
|
|
struct ifaddrs* myaddrs;
|
|
if (getifaddrs(&myaddrs) == 0)
|
|
{
|
|
for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
|
|
{
|
|
if (ifa->ifa_addr == nullptr) continue;
|
|
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
{
|
|
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
|
|
CNetAddr addr(s4->sin_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
else if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
{
|
|
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
|
|
CNetAddr addr(s6->sin6_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
}
|
|
freeifaddrs(myaddrs);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CConnman::SetNetworkActive(bool active, CMasternodeSync* const mn_sync)
|
|
{
|
|
LogPrintf("%s: %s\n", __func__, active);
|
|
|
|
if (fNetworkActive == active) {
|
|
return;
|
|
}
|
|
|
|
fNetworkActive = active;
|
|
|
|
// mn_sync is nullptr during app initialization with `-networkactive=`
|
|
if (mn_sync) {
|
|
// Always call the Reset() if the network gets enabled/disabled to make sure the sync process
|
|
// gets a reset if its outdated..
|
|
mn_sync->Reset();
|
|
}
|
|
|
|
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
|
|
}
|
|
|
|
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in, bool network_active) :
|
|
addrman(addrman_in), nSeed0(nSeed0In), nSeed1(nSeed1In)
|
|
{
|
|
SetTryNewOutboundPeer(false);
|
|
|
|
Options connOptions;
|
|
Init(connOptions);
|
|
SetNetworkActive(network_active, /* mn_sync = */ nullptr);
|
|
}
|
|
|
|
NodeId CConnman::GetNewNodeId()
|
|
{
|
|
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
|
|
|
|
bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
|
|
{
|
|
const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
|
|
|
|
bilingual_str strError;
|
|
if (!BindListenPort(addr, strError, permissions)) {
|
|
if ((flags & BF_REPORT_ERROR) && clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
|
|
AddLocal(addr, LOCAL_BIND);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::InitBinds(const Options& options)
|
|
{
|
|
bool fBound = false;
|
|
for (const auto& addrBind : options.vBinds) {
|
|
fBound |= Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None);
|
|
}
|
|
for (const auto& addrBind : options.vWhiteBinds) {
|
|
fBound |= Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags);
|
|
}
|
|
for (const auto& addr_bind : options.onion_binds) {
|
|
fBound |= Bind(addr_bind, BF_DONT_ADVERTISE, NetPermissionFlags::None);
|
|
}
|
|
if (options.bind_on_any) {
|
|
struct in_addr inaddr_any;
|
|
inaddr_any.s_addr = htonl(INADDR_ANY);
|
|
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
|
|
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::None);
|
|
fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::None);
|
|
}
|
|
return fBound;
|
|
}
|
|
|
|
bool CConnman::Start(CDeterministicMNManager& dmnman, CMasternodeMetaMan& mn_metaman, CMasternodeSync& mn_sync,
|
|
CScheduler& scheduler, const Options& connOptions)
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
Init(connOptions);
|
|
|
|
if (socketEventsMode == SocketEventsMode::EPoll || socketEventsMode == SocketEventsMode::KQueue) {
|
|
m_edge_trig_events = std::make_unique<EdgeTriggeredEvents>(socketEventsMode);
|
|
if (!m_edge_trig_events->IsValid()) {
|
|
LogPrintf("Unable to initialize EdgeTriggeredEvents instance\n");
|
|
m_edge_trig_events.reset();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (fListen && !InitBinds(connOptions)) {
|
|
if (clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(
|
|
_("Failed to listen on any port. Use -listen=0 if you want this."),
|
|
"", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Proxy i2p_sam;
|
|
if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
|
|
m_i2p_sam_session = std::make_unique<i2p::sam::Session>(GetDataDir() / "i2p_private_key",
|
|
i2p_sam.proxy, &interruptNet);
|
|
}
|
|
|
|
for (const auto& strDest : connOptions.vSeedNodes) {
|
|
AddAddrFetch(strDest);
|
|
}
|
|
|
|
if (m_use_addrman_outgoing) {
|
|
// Load addresses from anchors.dat
|
|
m_anchors = ReadAnchors(GetDataDir() / ANCHORS_DATABASE_FILENAME);
|
|
if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
|
|
m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
|
|
}
|
|
LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
|
|
}
|
|
|
|
uiInterface.InitMessage(_("Starting network threads…").translated);
|
|
|
|
fAddressesInitialized = true;
|
|
|
|
if (semOutbound == nullptr) {
|
|
// initialize semaphore
|
|
semOutbound = std::make_unique<CSemaphore>(std::min(m_max_outbound, nMaxConnections));
|
|
}
|
|
if (semAddnode == nullptr) {
|
|
// initialize semaphore
|
|
semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
|
|
}
|
|
|
|
//
|
|
// Start threads
|
|
//
|
|
assert(m_msgproc);
|
|
InterruptSocks5(false);
|
|
interruptNet.reset();
|
|
flagInterruptMsgProc = false;
|
|
|
|
{
|
|
LOCK(mutexMsgProc);
|
|
fMsgProcWake = false;
|
|
}
|
|
|
|
#ifdef USE_WAKEUP_PIPE
|
|
m_wakeup_pipe = std::make_unique<WakeupPipe>(m_edge_trig_events.get());
|
|
if (!m_wakeup_pipe->IsValid()) {
|
|
/* We log the error but do not halt initialization */
|
|
LogPrintf("Unable to initialize WakeupPipe instance\n");
|
|
m_wakeup_pipe.reset();
|
|
}
|
|
#endif /* USE_WAKEUP_PIPE */
|
|
|
|
// Send and receive from sockets, accept connections
|
|
threadSocketHandler = std::thread(&util::TraceThread, "net", [this, &mn_sync] { ThreadSocketHandler(mn_sync); });
|
|
|
|
if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
|
|
LogPrintf("DNS seeding disabled\n");
|
|
else
|
|
threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
|
|
|
|
// Initiate manual connections
|
|
threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
|
|
|
|
if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
|
|
if (clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(
|
|
_("Cannot provide specific connections and have addrman find outgoing connections at the same."),
|
|
"", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
|
|
threadOpenConnections = std::thread(
|
|
&util::TraceThread, "opencon",
|
|
[this, connect = connOptions.m_specified_outgoing, &dmnman] { ThreadOpenConnections(connect, dmnman); });
|
|
}
|
|
|
|
// Initiate masternode connections
|
|
threadOpenMasternodeConnections = std::thread(&util::TraceThread, "mncon", [this, &dmnman, &mn_metaman, &mn_sync] {
|
|
ThreadOpenMasternodeConnections(dmnman, mn_metaman, mn_sync);
|
|
});
|
|
|
|
// Process messages
|
|
threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
|
|
|
|
if (m_i2p_sam_session) {
|
|
threadI2PAcceptIncoming =
|
|
std::thread(&util::TraceThread, "i2paccept", [this, &mn_sync] { ThreadI2PAcceptIncoming(mn_sync); });
|
|
}
|
|
|
|
// Dump network addresses
|
|
scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
|
|
|
|
return true;
|
|
}
|
|
|
|
class CNetCleanup
|
|
{
|
|
public:
|
|
CNetCleanup() {}
|
|
|
|
~CNetCleanup()
|
|
{
|
|
#ifdef WIN32
|
|
// Shutdown Windows Sockets
|
|
WSACleanup();
|
|
#endif
|
|
}
|
|
};
|
|
static CNetCleanup instance_of_cnetcleanup;
|
|
|
|
void CExplicitNetCleanup::callCleanup()
|
|
{
|
|
// Explicit call to destructor of CNetCleanup because it's not implicitly called
|
|
// when the wallet is restarted from within the wallet itself.
|
|
CNetCleanup tmp;
|
|
}
|
|
|
|
void CConnman::Interrupt()
|
|
{
|
|
{
|
|
LOCK(mutexMsgProc);
|
|
flagInterruptMsgProc = true;
|
|
}
|
|
condMsgProc.notify_all();
|
|
|
|
interruptNet();
|
|
InterruptSocks5(true);
|
|
|
|
if (semOutbound) {
|
|
for (int i=0; i<m_max_outbound; i++) {
|
|
semOutbound->post();
|
|
}
|
|
}
|
|
|
|
if (semAddnode) {
|
|
for (int i=0; i<nMaxAddnode; i++) {
|
|
semAddnode->post();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::StopThreads()
|
|
{
|
|
if (threadI2PAcceptIncoming.joinable()) {
|
|
threadI2PAcceptIncoming.join();
|
|
}
|
|
if (threadMessageHandler.joinable())
|
|
threadMessageHandler.join();
|
|
if (threadOpenMasternodeConnections.joinable())
|
|
threadOpenMasternodeConnections.join();
|
|
if (threadOpenConnections.joinable())
|
|
threadOpenConnections.join();
|
|
if (threadOpenAddedConnections.joinable())
|
|
threadOpenAddedConnections.join();
|
|
if (threadDNSAddressSeed.joinable())
|
|
threadDNSAddressSeed.join();
|
|
if (threadSocketHandler.joinable())
|
|
threadSocketHandler.join();
|
|
}
|
|
|
|
void CConnman::StopNodes()
|
|
{
|
|
if (fAddressesInitialized) {
|
|
DumpAddresses();
|
|
fAddressesInitialized = false;
|
|
|
|
if (m_use_addrman_outgoing) {
|
|
// Anchor connections are only dumped during clean shutdown.
|
|
std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
|
|
if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
|
|
anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
|
|
}
|
|
DumpAnchors(GetDataDir() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
|
|
}
|
|
}
|
|
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
|
|
// Close sockets
|
|
for (CNode *pnode : m_nodes)
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
for (ListenSocket& hListenSocket : vhListenSocket) {
|
|
if (hListenSocket.sock) {
|
|
if (m_edge_trig_events && !m_edge_trig_events->RemoveSocket(hListenSocket.sock->Get())) {
|
|
LogPrintf("EdgeTriggeredEvents::RemoveSocket() failed\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
// clean up some globals (to help leak detection)
|
|
std::vector<CNode*> nodes;
|
|
WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
|
|
for (CNode* pnode : nodes) {
|
|
DeleteNode(pnode);
|
|
}
|
|
for (CNode* pnode : m_nodes_disconnected) {
|
|
DeleteNode(pnode);
|
|
}
|
|
WITH_LOCK(cs_mapSocketToNode, mapSocketToNode.clear());
|
|
{
|
|
LOCK(cs_sendable_receivable_nodes);
|
|
mapReceivableNodes.clear();
|
|
}
|
|
{
|
|
LOCK(cs_mapNodesWithDataToSend);
|
|
mapNodesWithDataToSend.clear();
|
|
}
|
|
m_nodes_disconnected.clear();
|
|
vhListenSocket.clear();
|
|
semOutbound.reset();
|
|
semAddnode.reset();
|
|
/**
|
|
* m_wakeup_pipe must be reset *before* m_edge_trig_events as it may
|
|
* attempt to call EdgeTriggeredEvents::UnregisterPipe() in its destructor
|
|
*/
|
|
m_wakeup_pipe.reset();
|
|
m_edge_trig_events.reset();
|
|
}
|
|
|
|
void CConnman::DeleteNode(CNode* pnode)
|
|
{
|
|
assert(pnode);
|
|
m_msgproc->FinalizeNode(*pnode);
|
|
delete pnode;
|
|
}
|
|
|
|
CConnman::~CConnman()
|
|
{
|
|
Interrupt();
|
|
Stop();
|
|
}
|
|
|
|
std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network) const
|
|
{
|
|
std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network);
|
|
if (m_banman) {
|
|
addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
|
|
[this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
|
|
addresses.end());
|
|
}
|
|
return addresses;
|
|
}
|
|
|
|
std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
|
|
{
|
|
auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
|
|
uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
|
|
.Write(requestor.ConnectedThroughNetwork())
|
|
.Write(local_socket_bytes.data(), local_socket_bytes.size())
|
|
// For outbound connections, the port of the bound address is randomly
|
|
// assigned by the OS and would therefore not be useful for seeding.
|
|
.Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
|
|
.Finalize();
|
|
const auto current_time = GetTime<std::chrono::microseconds>();
|
|
auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
|
|
CachedAddrResponse& cache_entry = r.first->second;
|
|
if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
|
|
cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /* network */ std::nullopt);
|
|
// Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
|
|
// and the usefulness of ADDR responses to honest users.
|
|
//
|
|
// Longer cache lifetime makes it more difficult for an attacker to scrape
|
|
// enough AddrMan data to maliciously infer something useful.
|
|
// By the time an attacker scraped enough AddrMan records, most of
|
|
// the records should be old enough to not leak topology info by
|
|
// e.g. analyzing real-time changes in timestamps.
|
|
//
|
|
// It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
|
|
// so ~24 hours of cache lifetime indeed makes the data less inferable by the time
|
|
// most of it could be scraped (considering that timestamps are updated via
|
|
// ADDR self-announcements and when nodes communicate).
|
|
// We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
|
|
// (because even several timestamps of the same handful of nodes may leak privacy).
|
|
//
|
|
// On the other hand, longer cache lifetime makes ADDR responses
|
|
// outdated and less useful for an honest requestor, e.g. if most nodes
|
|
// in the ADDR response are no longer active.
|
|
//
|
|
// However, the churn in the network is known to be rather low. Since we consider
|
|
// nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
|
|
// max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
|
|
// in terms of the freshness of the response.
|
|
cache_entry.m_cache_entry_expiration = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6));
|
|
}
|
|
return cache_entry.m_addrs_response_cache;
|
|
}
|
|
|
|
bool CConnman::AddNode(const std::string& strNode)
|
|
{
|
|
LOCK(m_added_nodes_mutex);
|
|
for (const std::string& it : m_added_nodes) {
|
|
if (strNode == it) return false;
|
|
}
|
|
|
|
m_added_nodes.push_back(strNode);
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::RemoveAddedNode(const std::string& strNode)
|
|
{
|
|
LOCK(m_added_nodes_mutex);
|
|
for(std::vector<std::string>::iterator it = m_added_nodes.begin(); it != m_added_nodes.end(); ++it) {
|
|
if (strNode == *it) {
|
|
m_added_nodes.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::AddPendingMasternode(const uint256& proTxHash)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
if (std::find(vPendingMasternodes.begin(), vPendingMasternodes.end(), proTxHash) != vPendingMasternodes.end()) {
|
|
return false;
|
|
}
|
|
|
|
vPendingMasternodes.push_back(proTxHash);
|
|
return true;
|
|
}
|
|
|
|
void CConnman::SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
auto it = masternodeQuorumNodes.emplace(std::make_pair(llmqType, quorumHash), proTxHashes);
|
|
if (!it.second) {
|
|
it.first->second = proTxHashes;
|
|
}
|
|
}
|
|
|
|
void CConnman::SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes)
|
|
{
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
auto it = masternodeQuorumRelayMembers.emplace(std::make_pair(llmqType, quorumHash), proTxHashes);
|
|
if (!it.second) {
|
|
it.first->second = proTxHashes;
|
|
}
|
|
}
|
|
|
|
// Update existing connections
|
|
ForEachNode([&](CNode* pnode) {
|
|
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
|
|
if (!verifiedProRegTxHash.IsNull() && !pnode->m_masternode_iqr_connection && IsMasternodeQuorumRelayMember(verifiedProRegTxHash)) {
|
|
// Tell our peer that we're interested in plain LLMQ recovered signatures.
|
|
// Otherwise the peer would only announce/send messages resulting from QRECSIG,
|
|
// e.g. InstantSend locks or ChainLocks. SPV and regular full nodes should not send
|
|
// this message as they are usually only interested in the higher level messages.
|
|
const CNetMsgMaker msgMaker(pnode->GetCommonVersion());
|
|
PushMessage(pnode, msgMaker.Make(NetMsgType::QSENDRECSIGS, true));
|
|
pnode->m_masternode_iqr_connection = true;
|
|
}
|
|
});
|
|
}
|
|
|
|
bool CConnman::HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
return masternodeQuorumNodes.count(std::make_pair(llmqType, quorumHash));
|
|
}
|
|
|
|
std::set<uint256> CConnman::GetMasternodeQuorums(Consensus::LLMQType llmqType)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
std::set<uint256> result;
|
|
for (const auto& p : masternodeQuorumNodes) {
|
|
if (p.first.first != llmqType) {
|
|
continue;
|
|
}
|
|
result.emplace(p.first.second);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::set<NodeId> CConnman::GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const
|
|
{
|
|
LOCK2(m_nodes_mutex, cs_vPendingMasternodes);
|
|
auto it = masternodeQuorumNodes.find(std::make_pair(llmqType, quorumHash));
|
|
if (it == masternodeQuorumNodes.end()) {
|
|
return {};
|
|
}
|
|
const auto& proRegTxHashes = it->second;
|
|
|
|
std::set<NodeId> nodes;
|
|
for (const auto pnode : m_nodes) {
|
|
if (pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
auto verifiedProRegTxHash = pnode->GetVerifiedProRegTxHash();
|
|
if (!pnode->qwatch && (verifiedProRegTxHash.IsNull() || !proRegTxHashes.count(verifiedProRegTxHash))) {
|
|
continue;
|
|
}
|
|
nodes.emplace(pnode->GetId());
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
void CConnman::RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
masternodeQuorumNodes.erase(std::make_pair(llmqType, quorumHash));
|
|
masternodeQuorumRelayMembers.erase(std::make_pair(llmqType, quorumHash));
|
|
}
|
|
|
|
bool CConnman::IsMasternodeQuorumNode(const CNode* pnode, const CDeterministicMNList& tip_mn_list)
|
|
{
|
|
// Let's see if this is an outgoing connection to an address that is known to be a masternode
|
|
// We however only need to know this if the node did not authenticate itself as a MN yet
|
|
uint256 assumedProTxHash;
|
|
if (pnode->GetVerifiedProRegTxHash().IsNull() && !pnode->IsInboundConn()) {
|
|
auto dmn = tip_mn_list.GetMNByService(pnode->addr);
|
|
if (dmn == nullptr) {
|
|
// This is definitely not a masternode
|
|
return false;
|
|
}
|
|
assumedProTxHash = dmn->proTxHash;
|
|
}
|
|
|
|
LOCK(cs_vPendingMasternodes);
|
|
for (const auto& p : masternodeQuorumNodes) {
|
|
if (!pnode->GetVerifiedProRegTxHash().IsNull()) {
|
|
if (p.second.count(pnode->GetVerifiedProRegTxHash())) {
|
|
return true;
|
|
}
|
|
} else if (!assumedProTxHash.IsNull()) {
|
|
if (p.second.count(assumedProTxHash)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::IsMasternodeQuorumRelayMember(const uint256& protxHash)
|
|
{
|
|
if (protxHash.IsNull()) {
|
|
return false;
|
|
}
|
|
LOCK(cs_vPendingMasternodes);
|
|
for (const auto& p : masternodeQuorumRelayMembers) {
|
|
if (p.second.count(protxHash)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AddPendingProbeConnections(const std::set<uint256> &proTxHashes)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
masternodePendingProbes.insert(proTxHashes.begin(), proTxHashes.end());
|
|
}
|
|
|
|
size_t CConnman::GetNodeCount(ConnectionDirection flags) const
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
|
|
int nNum = 0;
|
|
for (const auto& pnode : m_nodes) {
|
|
if (pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if ((flags & ConnectionDirection::Verified) && pnode->GetVerifiedProRegTxHash().IsNull()) {
|
|
continue;
|
|
}
|
|
if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
|
|
nNum++;
|
|
} else if (flags == ConnectionDirection::Verified) {
|
|
nNum++;
|
|
}
|
|
}
|
|
|
|
return nNum;
|
|
}
|
|
|
|
size_t CConnman::GetMaxOutboundNodeCount()
|
|
{
|
|
return m_max_outbound;
|
|
}
|
|
|
|
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
|
|
{
|
|
vstats.clear();
|
|
LOCK(m_nodes_mutex);
|
|
vstats.reserve(m_nodes.size());
|
|
for (CNode* pnode : m_nodes) {
|
|
if (pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
vstats.emplace_back();
|
|
pnode->CopyStats(vstats.back());
|
|
vstats.back().m_mapped_as = pnode->addr.GetMappedAS(addrman.GetAsmap());
|
|
}
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const std::string& strNode)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
if (CNode* pnode = FindNode(strNode)) {
|
|
LogPrint(BCLog::NET_NETCONN, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const CSubNet& subnet)
|
|
{
|
|
bool disconnected = false;
|
|
LOCK(m_nodes_mutex);
|
|
for (CNode* pnode : m_nodes) {
|
|
if (subnet.Match(pnode->addr)) {
|
|
LogPrint(BCLog::NET_NETCONN, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
disconnected = true;
|
|
}
|
|
}
|
|
return disconnected;
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const CNetAddr& addr)
|
|
{
|
|
return DisconnectNode(CSubNet(addr));
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(NodeId id)
|
|
{
|
|
LOCK(m_nodes_mutex);
|
|
for(CNode* pnode : m_nodes) {
|
|
if (id == pnode->GetId()) {
|
|
LogPrint(BCLog::NET_NETCONN, "disconnect by id peer=%d; disconnecting\n", pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::RecordBytesRecv(uint64_t bytes)
|
|
{
|
|
nTotalBytesRecv += bytes;
|
|
statsClient.count("bandwidth.bytesReceived", bytes, 0.1f);
|
|
statsClient.gauge("bandwidth.totalBytesReceived", nTotalBytesRecv, 0.01f);
|
|
}
|
|
|
|
void CConnman::RecordBytesSent(uint64_t bytes)
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
LOCK(m_total_bytes_sent_mutex);
|
|
|
|
nTotalBytesSent += bytes;
|
|
statsClient.count("bandwidth.bytesSent", bytes, 0.01f);
|
|
statsClient.gauge("bandwidth.totalBytesSent", nTotalBytesSent, 0.01f);
|
|
|
|
const auto now = GetTime<std::chrono::seconds>();
|
|
if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
|
|
{
|
|
// timeframe expired, reset cycle
|
|
nMaxOutboundCycleStartTime = now;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
}
|
|
|
|
nMaxOutboundTotalBytesSentInCycle += bytes;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTarget() const
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
LOCK(m_total_bytes_sent_mutex);
|
|
return nMaxOutboundLimit;
|
|
}
|
|
|
|
std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
|
|
{
|
|
return MAX_UPLOAD_TIMEFRAME;
|
|
}
|
|
|
|
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
LOCK(m_total_bytes_sent_mutex);
|
|
return GetMaxOutboundTimeLeftInCycle_();
|
|
}
|
|
|
|
std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
|
|
{
|
|
AssertLockHeld(m_total_bytes_sent_mutex);
|
|
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0s;
|
|
|
|
if (nMaxOutboundCycleStartTime.count() == 0)
|
|
return MAX_UPLOAD_TIMEFRAME;
|
|
|
|
const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
|
|
const auto now = GetTime<std::chrono::seconds>();
|
|
return (cycleEndTime < now) ? 0s : cycleEndTime - now;
|
|
}
|
|
|
|
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
LOCK(m_total_bytes_sent_mutex);
|
|
if (nMaxOutboundLimit == 0)
|
|
return false;
|
|
|
|
if (historicalBlockServingLimit)
|
|
{
|
|
// keep a large enough buffer to at least relay each block once
|
|
const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
|
|
const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MaxBlockSize(fDIP0001ActiveAtTip);
|
|
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
|
|
return true;
|
|
}
|
|
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t CConnman::GetOutboundTargetBytesLeft() const
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
LOCK(m_total_bytes_sent_mutex);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesRecv() const
|
|
{
|
|
return nTotalBytesRecv;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesSent() const
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
LOCK(m_total_bytes_sent_mutex);
|
|
return nTotalBytesSent;
|
|
}
|
|
|
|
ServiceFlags CConnman::GetLocalServices() const
|
|
{
|
|
return nLocalServices;
|
|
}
|
|
|
|
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
|
|
|
|
CNode::CNode(NodeId idIn,
|
|
ServiceFlags nLocalServicesIn,
|
|
std::shared_ptr<Sock> sock,
|
|
const CAddress& addrIn,
|
|
uint64_t nKeyedNetGroupIn,
|
|
uint64_t nLocalHostNonceIn,
|
|
const CAddress& addrBindIn,
|
|
const std::string& addrNameIn,
|
|
ConnectionType conn_type_in,
|
|
bool inbound_onion,
|
|
std::unique_ptr<i2p::sam::Session>&& i2p_sam_session)
|
|
: m_deserializer{std::make_unique<V1TransportDeserializer>(V1TransportDeserializer(Params(), idIn, SER_NETWORK, INIT_PROTO_VERSION))},
|
|
m_serializer{std::make_unique<V1TransportSerializer>(V1TransportSerializer())},
|
|
m_sock{sock},
|
|
m_connected{GetTime<std::chrono::seconds>()},
|
|
addr{addrIn},
|
|
addrBind{addrBindIn},
|
|
m_addr_name{addrNameIn.empty() ? addr.ToStringIPPort() : addrNameIn},
|
|
m_inbound_onion{inbound_onion},
|
|
nKeyedNetGroup{nKeyedNetGroupIn},
|
|
id{idIn},
|
|
nLocalHostNonce{nLocalHostNonceIn},
|
|
m_conn_type{conn_type_in},
|
|
nLocalServices{nLocalServicesIn},
|
|
m_i2p_sam_session{std::move(i2p_sam_session)}
|
|
{
|
|
if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
|
|
|
|
for (const std::string &msg : getAllNetMessageTypes())
|
|
mapRecvBytesPerMsgType[msg] = 0;
|
|
mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
|
|
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
|
|
}
|
|
}
|
|
|
|
bool CConnman::NodeFullyConnected(const CNode* pnode)
|
|
{
|
|
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
|
|
}
|
|
|
|
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
|
{
|
|
AssertLockNotHeld(m_total_bytes_sent_mutex);
|
|
size_t nMessageSize = msg.data.size();
|
|
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.m_type), nMessageSize, pnode->GetId());
|
|
if (gArgs.GetBoolArg("-capturemessages", false)) {
|
|
CaptureMessage(pnode->addr, msg.m_type, msg.data, /* incoming */ false);
|
|
}
|
|
|
|
// make sure we use the appropriate network transport format
|
|
std::vector<unsigned char> serializedHeader;
|
|
pnode->m_serializer->prepareForTransport(msg, serializedHeader);
|
|
|
|
size_t nTotalSize = nMessageSize + serializedHeader.size();
|
|
statsClient.count("bandwidth.message." + SanitizeString(msg.m_type.c_str()) + ".bytesSent", nTotalSize, 1.0f);
|
|
statsClient.inc("message.sent." + SanitizeString(msg.m_type.c_str()), 1.0f);
|
|
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
bool hasPendingData = !pnode->vSendMsg.empty();
|
|
|
|
//log total amount of bytes per message type
|
|
pnode->mapSendBytesPerMsgType[msg.m_type] += nTotalSize;
|
|
pnode->nSendSize += nTotalSize;
|
|
|
|
if (pnode->nSendSize > nSendBufferMaxSize) pnode->fPauseSend = true;
|
|
pnode->vSendMsg.push_back(std::move(serializedHeader));
|
|
if (nMessageSize) pnode->vSendMsg.push_back(std::move(msg.data));
|
|
pnode->nSendMsgSize = pnode->vSendMsg.size();
|
|
|
|
{
|
|
LOCK(cs_mapNodesWithDataToSend);
|
|
// we're not holding m_nodes_mutex here, so there is a chance of this node being disconnected shortly before
|
|
// we get here. Whoever called PushMessage still has a ref to CNode*, but will later Release() it, so we
|
|
// might end up having an entry in mapNodesWithDataToSend that is not in m_nodes anymore. We need to
|
|
// Add/Release refs when adding/erasing mapNodesWithDataToSend.
|
|
if (mapNodesWithDataToSend.emplace(pnode->GetId(), pnode).second) {
|
|
pnode->AddRef();
|
|
}
|
|
}
|
|
|
|
// wake up select() call in case there was no pending data before (so it was not selecting this socket for sending)
|
|
if (!hasPendingData && (m_wakeup_pipe && m_wakeup_pipe->m_need_wakeup.load()))
|
|
m_wakeup_pipe->Write();
|
|
}
|
|
}
|
|
|
|
bool CConnman::ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func)
|
|
{
|
|
CNode* found = nullptr;
|
|
LOCK(m_nodes_mutex);
|
|
for (auto&& pnode : m_nodes) {
|
|
if((CService)pnode->addr == addr) {
|
|
found = pnode;
|
|
break;
|
|
}
|
|
}
|
|
return found != nullptr && cond(found) && func(found);
|
|
}
|
|
|
|
bool CConnman::ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func)
|
|
{
|
|
CNode* found = nullptr;
|
|
LOCK(m_nodes_mutex);
|
|
for (auto&& pnode : m_nodes) {
|
|
if(pnode->GetId() == id) {
|
|
found = pnode;
|
|
break;
|
|
}
|
|
}
|
|
return found != nullptr && cond(found) && func(found);
|
|
}
|
|
|
|
bool CConnman::IsMasternodeOrDisconnectRequested(const CService& addr) {
|
|
return ForNode(addr, AllNodes, [](CNode* pnode){
|
|
return pnode->m_masternode_connection || pnode->fDisconnect;
|
|
});
|
|
}
|
|
|
|
std::chrono::microseconds CConnman::PoissonNextSendInbound(std::chrono::microseconds now, std::chrono::seconds average_interval)
|
|
{
|
|
if (m_next_send_inv_to_incoming.load() < now) {
|
|
// If this function were called from multiple threads simultaneously
|
|
// it would possible that both update the next send variable, and return a different result to their caller.
|
|
// This is not possible in practice as only the net processing thread invokes this function.
|
|
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval);
|
|
}
|
|
return m_next_send_inv_to_incoming;
|
|
}
|
|
|
|
std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval)
|
|
{
|
|
double unscaled = -log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */);
|
|
return now + std::chrono::duration_cast<std::chrono::microseconds>(unscaled * average_interval + 0.5us);
|
|
}
|
|
|
|
CConnman::NodesSnapshot::NodesSnapshot(const CConnman& connman, std::function<bool(const CNode* pnode)> filter,
|
|
bool shuffle)
|
|
{
|
|
LOCK(connman.m_nodes_mutex);
|
|
m_nodes_copy.reserve(connman.m_nodes.size());
|
|
|
|
for (auto& node : connman.m_nodes) {
|
|
if (!filter(node))
|
|
continue;
|
|
node->AddRef();
|
|
m_nodes_copy.push_back(node);
|
|
}
|
|
|
|
if (shuffle) {
|
|
Shuffle(m_nodes_copy.begin(), m_nodes_copy.end(), FastRandomContext{});
|
|
}
|
|
}
|
|
|
|
CConnman::NodesSnapshot::~NodesSnapshot()
|
|
{
|
|
for (auto& node : m_nodes_copy) {
|
|
node->Release();
|
|
}
|
|
}
|
|
|
|
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
|
|
{
|
|
return CSipHasher(nSeed0, nSeed1).Write(id);
|
|
}
|
|
|
|
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const
|
|
{
|
|
std::vector<unsigned char> vchNetGroup(ad.GetGroup(addrman.GetAsmap()));
|
|
|
|
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize();
|
|
}
|
|
|
|
void CaptureMessageToFile(const CAddress& addr,
|
|
const std::string& msg_type,
|
|
Span<const unsigned char> data,
|
|
bool is_incoming)
|
|
{
|
|
// Note: This function captures the message at the time of processing,
|
|
// not at socket receive/send time.
|
|
// This ensures that the messages are always in order from an application
|
|
// layer (processing) perspective.
|
|
auto now = GetTime<std::chrono::microseconds>();
|
|
|
|
// Windows folder names can not include a colon
|
|
std::string clean_addr = addr.ToString();
|
|
std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
|
|
|
|
fs::path base_path = GetDataDir() / "message_capture" / clean_addr;
|
|
fs::create_directories(base_path);
|
|
|
|
fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
|
|
CAutoFile f(fsbridge::fopen(path, "ab"), SER_DISK, CLIENT_VERSION);
|
|
|
|
ser_writedata64(f, now.count());
|
|
f.write(MakeByteSpan(msg_type));
|
|
for (auto i = msg_type.length(); i < CMessageHeader::COMMAND_SIZE; ++i) {
|
|
f << uint8_t{'\0'};
|
|
}
|
|
uint32_t size = data.size();
|
|
ser_writedata32(f, size);
|
|
f.write(AsBytes(data));
|
|
}
|
|
|
|
std::function<void(const CAddress& addr,
|
|
const std::string& msg_type,
|
|
Span<const unsigned char> data,
|
|
bool is_incoming)>
|
|
CaptureMessage = CaptureMessageToFile;
|