dash/test/functional/feature_bip68_sequence.py
MarcoFalke 6ad9bdf722 Merge #16060: Bury bip9 deployments
e78aaf41f43d0e2ad78fa6d8dad61032c8ef73d0 [docs] Add release notes for burying bip 9 soft fork deployments (John Newbery)
8319e738f9f118025b332e4fa804d4c31e4113f4 [tests] Add coverage for the content of getblockchaininfo.softforks (James O'Beirne)
0328dcdcfcb56dc8918697716d7686be048ad0b3 [Consensus] Bury segwit deployment (John Newbery)
1c93b9b31c2ab7358f9d55f52dd46340397c906d [Consensus] Bury CSV deployment height (John Newbery)
3862e473f0cb71a762c0306b171b591341d58142 [rpc] Tidy up reporting of buried and ongoing softforks (John Newbery)

Pull request description:

  This hardcodes CSV and segwit activation heights, similar to the BIP 90 buried deployments for BIPs 34, 65 and 66.

  CSV and segwit have been active for over 18 months. Hardcoding the activation height is a code simplification, makes it easier to understand segwit activation status, and reduces technical debt.

  This was originally attempted by jl2012 in #11398 and again by me in #12360.

ACKs for top commit:
  ajtowns:
    ACK e78aaf41f43d0e2ad78fa6d8dad61032c8ef73d0 ; checked diff to previous acked commit, checked tests still work
  ariard:
    ACK e78aaf4, check diff, run the tests again and successfully activated csv/segwit heights on mainnet as expected.
  MarcoFalke:
    ACK e78aaf41f43d0e2ad78fa6d8dad61032c8ef73d0 (still didn't check if the mainnet block heights are correct, but the code looks good now)

Tree-SHA512: 7e951829106e21a81725f7d3e236eddbb59349189740907bb47e33f5dbf95c43753ac1231f47ae7bee85c8c81b2146afcdfdc11deb1503947f23093a9c399912
2023-04-25 23:41:20 -05:00

409 lines
18 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2014-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test BIP68 implementation."""
from test_framework.blocktools import create_block, create_coinbase
from test_framework.messages import COIN, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, ToHex
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
assert_greater_than,
assert_raises_rpc_error,
satoshi_round,
softfork_active,
)
from test_framework.script_util import DUMMY_P2SH_SCRIPT
SEQUENCE_LOCKTIME_DISABLE_FLAG = (1<<31)
SEQUENCE_LOCKTIME_TYPE_FLAG = (1<<22) # this means use time (0 means height)
SEQUENCE_LOCKTIME_GRANULARITY = 9 # this is a bit-shift
SEQUENCE_LOCKTIME_MASK = 0x0000ffff
# RPC error for non-BIP68 final transactions
NOT_FINAL_ERROR = "non-BIP68-final"
class BIP68Test(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 2
self.extra_args = [
["-acceptnonstdtxn=1"],
["-acceptnonstdtxn=0"],
]
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
def run_test(self):
self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"]
# Generate some coins
self.nodes[0].generate(110)
self.log.info("Running test disable flag")
self.test_disable_flag()
self.log.info("Running test sequence-lock-confirmed-inputs")
self.test_sequence_lock_confirmed_inputs()
self.log.info("Running test sequence-lock-unconfirmed-inputs")
self.test_sequence_lock_unconfirmed_inputs()
self.log.info("Running test BIP68 not consensus before activation")
self.test_bip68_not_consensus()
self.log.info("Activating BIP68 (and 112/113)")
self.activateCSV()
self.log.info("Verifying nVersion=2 transactions are standard.")
self.log.info("Note that nVersion=2 transactions are always standard (independent of BIP68 activation status).")
self.test_version2_relay()
self.log.info("Passed")
# Test that BIP68 is not in effect if tx version is 1, or if
# the first sequence bit is set.
def test_disable_flag(self):
# Create some unconfirmed inputs
new_addr = self.nodes[0].getnewaddress()
self.nodes[0].sendtoaddress(new_addr, 2) # send 2 BTC
utxos = self.nodes[0].listunspent(0, 0)
assert len(utxos) > 0
utxo = utxos[0]
tx1 = CTransaction()
value = int(satoshi_round(utxo["amount"] - self.relayfee)*COIN)
# Check that the disable flag disables relative locktime.
# If sequence locks were used, this would require 1 block for the
# input to mature.
sequence_value = SEQUENCE_LOCKTIME_DISABLE_FLAG | 1
tx1.vin = [CTxIn(COutPoint(int(utxo["txid"], 16), utxo["vout"]), nSequence=sequence_value)]
tx1.vout = [CTxOut(value, DUMMY_P2SH_SCRIPT)]
tx1_signed = self.nodes[0].signrawtransactionwithwallet(ToHex(tx1))["hex"]
tx1_id = self.nodes[0].sendrawtransaction(tx1_signed)
tx1_id = int(tx1_id, 16)
# This transaction will enable sequence-locks, so this transaction should
# fail
tx2 = CTransaction()
tx2.nVersion = 2
sequence_value = sequence_value & 0x7fffffff
tx2.vin = [CTxIn(COutPoint(tx1_id, 0), nSequence=sequence_value)]
tx2.vout = [CTxOut(int(value - self.relayfee * COIN), DUMMY_P2SH_SCRIPT)]
tx2.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx2))
# Setting the version back down to 1 should disable the sequence lock,
# so this should be accepted.
tx2.nVersion = 1
self.nodes[0].sendrawtransaction(ToHex(tx2))
# Calculate the median time past of a prior block ("confirmations" before
# the current tip).
def get_median_time_past(self, confirmations):
block_hash = self.nodes[0].getblockhash(self.nodes[0].getblockcount()-confirmations)
return self.nodes[0].getblockheader(block_hash)["mediantime"]
# Test that sequence locks are respected for transactions spending confirmed inputs.
def test_sequence_lock_confirmed_inputs(self):
# Create lots of confirmed utxos, and use them to generate lots of random
# transactions.
max_outputs = 50
addresses = []
while len(addresses) < max_outputs:
addresses.append(self.nodes[0].getnewaddress())
while len(self.nodes[0].listunspent()) < 200:
import random
random.shuffle(addresses)
num_outputs = random.randint(1, max_outputs)
outputs = {}
for i in range(num_outputs):
outputs[addresses[i]] = random.randint(1, 20)*0.01
self.nodes[0].sendmany("", outputs)
self.nodes[0].generate(1)
utxos = self.nodes[0].listunspent()
# Try creating a lot of random transactions.
# Each time, choose a random number of inputs, and randomly set
# some of those inputs to be sequence locked (and randomly choose
# between height/time locking). Small random chance of making the locks
# all pass.
for i in range(400):
# Randomly choose up to 10 inputs
num_inputs = random.randint(1, 10)
random.shuffle(utxos)
# Track whether any sequence locks used should fail
should_pass = True
# Track whether this transaction was built with sequence locks
using_sequence_locks = False
tx = CTransaction()
tx.nVersion = 2
value = 0
for j in range(num_inputs):
sequence_value = 0xfffffffe # this disables sequence locks
# 50% chance we enable sequence locks
if random.randint(0,1):
using_sequence_locks = True
# 10% of the time, make the input sequence value pass
input_will_pass = (random.randint(1,10) == 1)
sequence_value = utxos[j]["confirmations"]
if not input_will_pass:
sequence_value += 1
should_pass = False
# Figure out what the median-time-past was for the confirmed input
# Note that if an input has N confirmations, we're going back N blocks
# from the tip so that we're looking up MTP of the block
# PRIOR to the one the input appears in, as per the BIP68 spec.
orig_time = self.get_median_time_past(utxos[j]["confirmations"])
cur_time = self.get_median_time_past(0) # MTP of the tip
# can only timelock this input if it's not too old -- otherwise use height
can_time_lock = True
if ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY) >= SEQUENCE_LOCKTIME_MASK:
can_time_lock = False
# if time-lockable, then 50% chance we make this a time lock
if random.randint(0,1) and can_time_lock:
# Find first time-lock value that fails, or latest one that succeeds
time_delta = sequence_value << SEQUENCE_LOCKTIME_GRANULARITY
if input_will_pass and time_delta > cur_time - orig_time:
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)
elif (not input_will_pass and time_delta <= cur_time - orig_time):
sequence_value = ((cur_time - orig_time) >> SEQUENCE_LOCKTIME_GRANULARITY)+1
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx.vin.append(CTxIn(COutPoint(int(utxos[j]["txid"], 16), utxos[j]["vout"]), nSequence=sequence_value))
value += utxos[j]["amount"]*COIN
# Overestimate the size of the tx - signatures should be less than 120 bytes, and leave 50 for the output
tx_size = len(ToHex(tx))//2 + 120*num_inputs + 50
tx.vout.append(CTxOut(int(value-self.relayfee*tx_size*COIN/1000), DUMMY_P2SH_SCRIPT))
rawtx = self.nodes[0].signrawtransactionwithwallet(ToHex(tx))["hex"]
if (using_sequence_locks and not should_pass):
# This transaction should be rejected
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, rawtx)
else:
# This raw transaction should be accepted
self.nodes[0].sendrawtransaction(rawtx)
utxos = self.nodes[0].listunspent()
# Test that sequence locks on unconfirmed inputs must have nSequence
# height or time of 0 to be accepted.
# Then test that BIP68-invalid transactions are removed from the mempool
# after a reorg.
def test_sequence_lock_unconfirmed_inputs(self):
# Store height so we can easily reset the chain at the end of the test
cur_height = self.nodes[0].getblockcount()
# Create a mempool tx.
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
tx1.rehash()
# Anyone-can-spend mempool tx.
# Sequence lock of 0 should pass.
tx2 = CTransaction()
tx2.nVersion = 2
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), DUMMY_P2SH_SCRIPT)]
tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
tx2 = FromHex(tx2, tx2_raw)
tx2.rehash()
self.nodes[0].sendrawtransaction(tx2_raw)
# Create a spend of the 0th output of orig_tx with a sequence lock
# of 1, and test what happens when submitting.
# orig_tx.vout[0] must be an anyone-can-spend output
def test_nonzero_locks(orig_tx, node, relayfee, use_height_lock):
sequence_value = 1
if not use_height_lock:
sequence_value |= SEQUENCE_LOCKTIME_TYPE_FLAG
tx = CTransaction()
tx.nVersion = 2
tx.vin = [CTxIn(COutPoint(orig_tx.sha256, 0), nSequence=sequence_value)]
tx.vout = [CTxOut(int(orig_tx.vout[0].nValue - relayfee * COIN), DUMMY_P2SH_SCRIPT)]
tx.rehash()
if (orig_tx.hash in node.getrawmempool()):
# sendrawtransaction should fail if the tx is in the mempool
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, node.sendrawtransaction, ToHex(tx))
else:
# sendrawtransaction should succeed if the tx is not in the mempool
node.sendrawtransaction(ToHex(tx))
return tx
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Now mine some blocks, but make sure tx2 doesn't get mined.
# Use prioritisetransaction to lower the effective feerate to 0
self.nodes[0].prioritisetransaction(tx2.hash, int(-self.relayfee*COIN))
cur_time = self.mocktime
for i in range(10):
self.nodes[0].setmocktime(cur_time + 600)
self.nodes[0].generate(1)
cur_time += 600
assert tx2.hash in self.nodes[0].getrawmempool()
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=True)
test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
# Mine tx2, and then try again
self.nodes[0].prioritisetransaction(tx2.hash, int(self.relayfee*COIN))
# Advance the time on the node so that we can test timelocks
self.nodes[0].setmocktime(cur_time+600)
self.nodes[0].generate(1)
assert tx2.hash not in self.nodes[0].getrawmempool()
# Now that tx2 is not in the mempool, a sequence locked spend should
# succeed
tx3 = test_nonzero_locks(tx2, self.nodes[0], self.relayfee, use_height_lock=False)
assert tx3.hash in self.nodes[0].getrawmempool()
self.nodes[0].generate(1)
assert tx3.hash not in self.nodes[0].getrawmempool()
# One more test, this time using height locks
tx4 = test_nonzero_locks(tx3, self.nodes[0], self.relayfee, use_height_lock=True)
assert tx4.hash in self.nodes[0].getrawmempool()
# Now try combining confirmed and unconfirmed inputs
tx5 = test_nonzero_locks(tx4, self.nodes[0], self.relayfee, use_height_lock=True)
assert tx5.hash not in self.nodes[0].getrawmempool()
utxos = self.nodes[0].listunspent()
tx5.vin.append(CTxIn(COutPoint(int(utxos[0]["txid"], 16), utxos[0]["vout"]), nSequence=1))
tx5.vout[0].nValue += int(utxos[0]["amount"]*COIN)
raw_tx5 = self.nodes[0].signrawtransactionwithwallet(ToHex(tx5))["hex"]
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, raw_tx5)
# Test mempool-BIP68 consistency after reorg
#
# State of the transactions in the last blocks:
# ... -> [ tx2 ] -> [ tx3 ]
# tip-1 tip
# And currently tx4 is in the mempool.
#
# If we invalidate the tip, tx3 should get added to the mempool, causing
# tx4 to be removed (fails sequence-lock).
self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
assert tx4.hash not in self.nodes[0].getrawmempool()
assert tx3.hash in self.nodes[0].getrawmempool()
# Now mine 2 empty blocks to reorg out the current tip (labeled tip-1 in
# diagram above).
# This would cause tx2 to be added back to the mempool, which in turn causes
# tx3 to be removed.
tip = int(self.nodes[0].getblockhash(self.nodes[0].getblockcount()-1), 16)
height = self.nodes[0].getblockcount()
for i in range(2):
block = create_block(tip, create_coinbase(height), cur_time)
block.nVersion = 3
block.rehash()
block.solve()
tip = block.sha256
height += 1
assert_equal(None if i == 1 else 'inconclusive', self.nodes[0].submitblock(ToHex(block)))
cur_time += 1
mempool = self.nodes[0].getrawmempool()
assert tx3.hash not in mempool
assert tx2.hash in mempool
# Reset the chain and get rid of the mocktimed-blocks
self.nodes[0].setmocktime(self.mocktime)
self.nodes[0].invalidateblock(self.nodes[0].getblockhash(cur_height+1))
self.nodes[0].generate(10)
# Make sure that BIP68 isn't being used to validate blocks prior to
# activation height. If more blocks are mined prior to this test
# being run, then it's possible the test has activated the soft fork, and
# this test should be moved to run earlier, or deleted.
def test_bip68_not_consensus(self):
assert not softfork_active(self.nodes[0], 'csv')
txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 2)
tx1 = FromHex(CTransaction(), self.nodes[0].getrawtransaction(txid))
tx1.rehash()
# Make an anyone-can-spend transaction
tx2 = CTransaction()
tx2.nVersion = 1
tx2.vin = [CTxIn(COutPoint(tx1.sha256, 0), nSequence=0)]
tx2.vout = [CTxOut(int(tx1.vout[0].nValue - self.relayfee*COIN), DUMMY_P2SH_SCRIPT)]
# sign tx2
tx2_raw = self.nodes[0].signrawtransactionwithwallet(ToHex(tx2))["hex"]
tx2 = FromHex(tx2, tx2_raw)
tx2.rehash()
self.nodes[0].sendrawtransaction(ToHex(tx2))
# Now make an invalid spend of tx2 according to BIP68
sequence_value = 100 # 100 block relative locktime
tx3 = CTransaction()
tx3.nVersion = 2
tx3.vin = [CTxIn(COutPoint(tx2.sha256, 0), nSequence=sequence_value)]
tx3.vout = [CTxOut(int(tx2.vout[0].nValue - self.relayfee * COIN), DUMMY_P2SH_SCRIPT)]
tx3.rehash()
assert_raises_rpc_error(-26, NOT_FINAL_ERROR, self.nodes[0].sendrawtransaction, ToHex(tx3))
# make a block that violates bip68; ensure that the tip updates
tip = int(self.nodes[0].getbestblockhash(), 16)
block = create_block(tip, create_coinbase(self.nodes[0].getblockcount()+1), self.mocktime + 600)
block.nVersion = 3
block.vtx.extend([tx1, tx2, tx3])
block.hashMerkleRoot = block.calc_merkle_root()
block.rehash()
block.solve()
assert_equal(None, self.nodes[0].submitblock(ToHex(block)))
assert_equal(self.nodes[0].getbestblockhash(), block.hash)
def activateCSV(self):
# activation should happen at block height 432 (3 periods)
# getblockchaininfo will show CSV as active at block 431 (144 * 3 -1) since it's returning whether CSV is active for the next block.
min_activation_height = 432
height = self.nodes[0].getblockcount()
assert_greater_than(min_activation_height - height, 2)
self.nodes[0].generate(min_activation_height - height - 2)
assert not softfork_active(self.nodes[0], 'csv')
self.nodes[0].generate(1)
assert softfork_active(self.nodes[0], 'csv')
self.sync_blocks()
# Use self.nodes[1] to test that version 2 transactions are standard.
def test_version2_relay(self):
inputs = [ ]
outputs = { self.nodes[1].getnewaddress() : 1.0 }
rawtx = self.nodes[1].createrawtransaction(inputs, outputs)
rawtxfund = self.nodes[1].fundrawtransaction(rawtx)['hex']
tx = FromHex(CTransaction(), rawtxfund)
tx.nVersion = 2
tx_signed = self.nodes[1].signrawtransactionwithwallet(ToHex(tx))["hex"]
self.nodes[1].sendrawtransaction(tx_signed)
if __name__ == '__main__':
BIP68Test().main()