8928146bfa
12f094ec215aacf30e4e380c0399f80d4e45c345 test: use constants for CSV/CLTV activation heights in rpc_signrawtransaction (Sebastian Falbesoner)
746f203f1950a7df50b9a7de87a361cc7354ffb4 test: introduce `generate_to_height` helper, use in rpc_signrawtransaction (Sebastian Falbesoner)
e3237b1cd07a5099fbb0108218194eb653b6a9f3 test: check that CSV/CLTV are active in rpc_signrawtransaction (Sebastian Falbesoner)
Pull request description:
This PR primarily aims to solve the current RPC timeout problem for test rpc_signrawtransaction.py, as described in #22542. In the course of that the test is also improved in other ways (see https://github.com/bitcoin/bitcoin/pull/22542#pullrequestreview-714297804).
Reviewers guideline:
* In `test_signing_with_cltv()`, a comment is fixed -- it wrongly referred to CSV, it should be CLTV.
* As preparation, assertions are added that ensure that CSV and CLTV have been really activated after generating blocks by checking the 'softforks' output of the getblockchaininfo() RPC. Right now in master, one could remove (or decrease, like in #22542) the generate calls and the test would still pass, when it shouldn't.
* A helper `generate_to_height()` is introduced which improves the previous way of reaching a block height in two ways:
- instead of blindly generating TH blocks to reach target block height >= TH, the current block height CH is taken into account, and only (TH - CH) are generated in total
- to avoid potential RPC timeouts, the block generation is split up into multiple generatetoaddress RPC calls ([as suggested by laanwj](https://github.com/bitcoin/bitcoin/pull/22542#issuecomment-886237866)); here chunks of 200 blocks have been chosen
* The helper is used in the affected sub-tests, which should both speed-up the test (from ~18s to ~12s on my machine) and avoid potential timeouts
* Finally, the activation constants for CSV and CLTV are used instead of using magic numbers 500 and 1500
Open questions:
* Any good naming alternatives for `generate_to_height()`? Not really happy with the name, happy to hear suggestions
* Where to put the CSV and CLTV activation height constants in the test_framewor folder? I guess importing constants from other tests isn't really the desired way to go
ACKs for top commit:
laanwj:
Code review and tested ACK 12f094ec215aacf30e4e380c0399f80d4e45c345
rajarshimaitra:
reACK
|
||
---|---|---|
.. | ||
functional | ||
fuzz | ||
lint | ||
sanitizer_suppressions | ||
util | ||
config.ini.in | ||
get_previous_releases.py | ||
README.md |
This directory contains integration tests that test dashd and its utilities in their entirety. It does not contain unit tests, which can be found in /src/test, /src/wallet/test, etc.
This directory contains the following sets of tests:
- functional which test the functionality of dashd and dash-qt by interacting with them through the RPC and P2P interfaces.
- util which tests the dash utilities, currently only dash-tx.
- lint which perform various static analysis checks.
The util tests are run as part of make check
target. The functional
tests and lint scripts can be run as explained in the sections below.
Running tests locally
Before tests can be run locally, Dash Core must be built. See the building instructions for help.
Functional tests
Dependencies and prerequisites
Many Dash specific tests require dash_hash. To install it:
- Clone the repo
git clone https://github.com/dashpay/dash_hash
- Install dash_hash
cd dash_hash && pip3 install -r requirements.txt .
The ZMQ functional test requires a python ZMQ library. To install it:
- on Unix, run
sudo apt-get install python3-zmq
- on mac OS, run
pip3 install pyzmq
On Windows the PYTHONUTF8
environment variable must be set to 1:
set PYTHONUTF8=1
Running the tests
Individual tests can be run by directly calling the test script, e.g.:
test/functional/wallet_hd.py
or can be run through the test_runner harness, eg:
test/functional/test_runner.py wallet_hd.py
You can run any combination (incl. duplicates) of tests by calling:
test/functional/test_runner.py <testname1> <testname2> <testname3> ...
Wildcard test names can be passed, if the paths are coherent and the test runner
is called from a bash
shell or similar that does the globbing. For example,
to run all the wallet tests:
test/functional/test_runner.py test/functional/wallet*
functional/test_runner.py functional/wallet* (called from the test/ directory)
test_runner.py wallet* (called from the test/functional/ directory)
but not
test/functional/test_runner.py wallet*
Combinations of wildcards can be passed:
test/functional/test_runner.py ./test/functional/tool* test/functional/mempool*
test_runner.py tool* mempool*
Run the regression test suite with:
test/functional/test_runner.py
Run all possible tests with
test/functional/test_runner.py --extended
In order to run backwards compatibility tests, download the previous node binaries:
test/get_previous_releases.py -b v19.3.0 v18.2.2 v0.17.0.3 v0.16.1.1 v0.15.0.0
By default, up to 4 tests will be run in parallel by test_runner. To specify
how many jobs to run, append --jobs=n
The individual tests and the test_runner harness have many command-line
options. Run test/functional/test_runner.py -h
to see them all.
Speed up test runs with a ramdisk
If you have available RAM on your system you can create a ramdisk to use as the cache
and tmp
directories for the functional tests in order to speed them up.
Speed-up amount varies on each system (and according to your ram speed and other variables), but a 2-3x speed-up is not uncommon.
To create a 4GB ramdisk on Linux at /mnt/tmp/
:
sudo mkdir -p /mnt/tmp
sudo mount -t tmpfs -o size=4g tmpfs /mnt/tmp/
Configure the size of the ramdisk using the size=
option.
The size of the ramdisk needed is relative to the number of concurrent jobs the test suite runs.
For example running the test suite with --jobs=100
might need a 16GB ramdisk, but running with --jobs=4
will only need a 4GB ramdisk.
To use, run the test suite specifying the ramdisk as the cachedir
and tmpdir
:
test/functional/test_runner.py --cachedir=/mnt/tmp/cache --tmpdir=/mnt/tmp
Once finished with the tests and the disk, and to free the ram, simply unmount the disk:
sudo umount /mnt/tmp
Troubleshooting and debugging test failures
Resource contention
The P2P and RPC ports used by the dashd nodes-under-test are chosen to make conflicts with other processes unlikely. However, if there is another dashd process running on the system (perhaps from a previous test which hasn't successfully killed all its dashd nodes), then there may be a port conflict which will cause the test to fail. It is recommended that you run the tests on a system where no other dashd processes are running.
On linux, the test framework will warn if there is another dashd process running when the tests are started.
If there are zombie dashd processes after test failure, you can kill them by running the following commands. Note that these commands will kill all dashd processes running on the system, so should not be used if any non-test dashd processes are being run.
killall dashd
or
pkill -9 dashd
Data directory cache
A pre-mined blockchain with 200 blocks is generated the first time a functional test is run and is stored in test/cache. This speeds up test startup times since new blockchains don't need to be generated for each test. However, the cache may get into a bad state, in which case tests will fail. If this happens, remove the cache directory (and make sure dashd processes are stopped as above):
rm -rf test/cache
killall dashd
Test logging
The tests contain logging at five different levels (DEBUG, INFO, WARNING, ERROR
and CRITICAL). From within your functional tests you can log to these different
levels using the logger included in the test_framework, e.g.
self.log.debug(object)
. By default:
- when run through the test_runner harness, all logs are written to
test_framework.log
and no logs are output to the console. - when run directly, all logs are written to
test_framework.log
and INFO level and above are output to the console. - when run by our CI (Continuous Integration), no logs are output to the console. However, if a test
fails, the
test_framework.log
and dashddebug.log
s will all be dumped to the console to help troubleshooting.
These log files can be located under the test data directory (which is always printed in the first line of test output):
<test data directory>/test_framework.log
<test data directory>/node<node number>/regtest/debug.log
.
The node number identifies the relevant test node, starting from node0
, which
corresponds to its position in the nodes list of the specific test,
e.g. self.nodes[0]
.
To change the level of logs output to the console, use the -l
command line
argument.
test_framework.log
and dashd debug.log
s can be combined into a single
aggregate log by running the combine_logs.py
script. The output can be plain
text, colorized text or html. For example:
test/functional/combine_logs.py -c <test data directory> | less -r
will pipe the colorized logs from the test into less.
Use --tracerpc
to trace out all the RPC calls and responses to the console. For
some tests (eg any that use submitblock
to submit a full block over RPC),
this can result in a lot of screen output.
By default, the test data directory will be deleted after a successful run.
Use --nocleanup
to leave the test data directory intact. The test data
directory is never deleted after a failed test.
Attaching a debugger
A python debugger can be attached to tests at any point. Just add the line:
import pdb; pdb.set_trace()
anywhere in the test. You will then be able to inspect variables, as well as call methods that interact with the dashd nodes-under-test.
If further introspection of the dashd instances themselves becomes
necessary, this can be accomplished by first setting a pdb breakpoint
at an appropriate location, running the test to that point, then using
gdb
(or lldb
on macOS) to attach to the process and debug.
For instance, to attach to self.node[1]
during a run you can get
the pid of the node within pdb
.
(pdb) self.node[1].process.pid
Alternatively, you can find the pid by inspecting the temp folder for the specific test you are running. The path to that folder is printed at the beginning of every test run:
2017-06-27 14:13:56.686000 TestFramework (INFO): Initializing test directory /tmp/user/1000/testo9vsdjo3
Use the path to find the pid file in the temp folder:
cat /tmp/user/1000/testo9vsdjo3/node1/regtest/dashd.pid
Then you can use the pid to start gdb
:
gdb /home/example/dashd <pid>
Note: gdb attach step may require ptrace_scope to be modified, or sudo
preceding the gdb
.
See this link for considerations: https://www.kernel.org/doc/Documentation/security/Yama.txt
Often while debugging rpc calls from functional tests, the test might reach timeout before
process can return a response. Use --timeout-factor 0
to disable all rpc timeouts for that partcular
functional test. Ex: test/functional/wallet_hd.py --timeout-factor 0
.
Profiling
An easy way to profile node performance during functional tests is provided
for Linux platforms using perf
.
Perf will sample the running node and will generate profile data in the node's
datadir. The profile data can then be presented using perf report
or a graphical
tool like hotspot.
To generate a profile during test suite runs, use the --perf
flag.
To see render the output to text, run
perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less
For ways to generate more granular profiles, see the README in test/functional.
Util tests
Util tests can be run locally by running test/util/bitcoin-util-test.py
.
Use the -v
option for verbose output.
Lint tests
Dependencies
Lint test | Dependency | Version used by CI | Installation |
---|---|---|---|
lint-python.sh |
flake8 | 3.8.3 | pip3 install flake8==3.8.3 |
lint-python.sh |
mypy | 0.781 | pip3 install mypy==0.781 |
lint-shell.sh |
ShellCheck | 0.7.2 | details... |
lint-shell.sh |
yq | default | pip3 install yq |
lint-spelling.sh |
codespell | 2.0.0 | pip3 install codespell==2.0.0 |
Please be aware that on Linux distributions all dependencies are usually available as packages, but could be outdated.
Running the tests
Individual tests can be run by directly calling the test script, e.g.:
test/lint/lint-files.sh
You can run all the shell-based lint tests by running:
test/lint/lint-all.sh
Writing functional tests
You are encouraged to write functional tests for new or existing features. Further information about the functional test framework and individual tests is found in test/functional.