dash/sage/group_prover.sage
Wladimir J. van der Laan b2135359b3 Squashed 'src/secp256k1/' changes from 6c527ec..7a49cac
7a49cac Merge #410: Add string.h include to ecmult_impl
0bbd5d4 Add string.h include to ecmult_impl
c5b32e1 Merge #405: Make secp256k1_fe_sqrt constant time
926836a Make secp256k1_fe_sqrt constant time
e2a8e92 Merge #404: Replace 3M + 4S doubling formula with 2M + 5S one
8ec49d8 Add note about 2M + 5S doubling formula
5a91bd7 Merge #400: A couple minor cleanups
ac01378 build: add -DSECP256K1_BUILD to benchmark_internal build flags
a6c6f99 Remove a bunch of unused stdlib #includes
65285a6 Merge #403: configure: add flag to disable OpenSSL tests
a9b2a5d configure: add flag to disable OpenSSL tests
b340123 Merge #402: Add support for testing quadratic residues
e6e9805 Add function for testing quadratic residue field/group elements.
efd953a Add Jacobi symbol test via GMP
fa36a0d Merge #401: ecmult_const: unify endomorphism and non-endomorphism skew cases
c6191fd ecmult_const: unify endomorphism and non-endomorphism skew cases
0b3e618 Merge #378: .gitignore build-aux cleanup
6042217 Merge #384: JNI: align shared files copyright/comments to bitcoinj's
24ad20f Merge #399: build: verify that the native compiler works for static precomp
b3be852 Merge #398: Test whether ECDH and Schnorr are enabled for JNI
aa0b1fd build: verify that the native compiler works for static precomp
eee808d Test whether ECDH and Schnorr are enabled for JNI
7b0fb18 Merge #366: ARM assembly implementation of field_10x26 inner (rebase of #173)
001f176 ARM assembly implementation of field_10x26 inner
0172be9 Merge #397: Small fixes for sha256
3f8b78e Fix undefs in hash_impl.h
2ab4695 Fix state size in sha256 struct
6875b01 Merge #386: Add some missing `VERIFY_CHECK(ctx != NULL)`
2c52b5d Merge #389: Cast pointers through uintptr_t under JNI
43097a4 Merge #390: Update bitcoin-core GitHub links
31c9c12 Merge #391: JNI: Only call ecdsa_verify if its inputs parsed correctly
1cb2302 Merge #392: Add testcase which hits additional branch in secp256k1_scalar_sqr
d2ee340 Merge #388: bench_ecdh: fix call to secp256k1_context_create
093a497 Add testcase which hits additional branch in secp256k1_scalar_sqr
a40c701 JNI: Only call ecdsa_verify if its inputs parsed correctly
faa2a11 Update bitcoin-core GitHub links
47b9e78 Cast pointers through uintptr_t under JNI
f36f9c6 bench_ecdh: fix call to secp256k1_context_create
bcc4881 Add some missing `VERIFY_CHECK(ctx != NULL)` for functions that use `ARG_CHECK`
6ceea2c align shared files copyright/comments to bitcoinj's
70141a8 Update .gitignore
7b549b1 Merge #373: build: fix x86_64 asm detection for some compilers
bc7c93c Merge #374: Add note about y=0 being possible on one of the sextic twists
e457018 Merge #364: JNI rebased
86e2d07 JNI library: cleanup, removed unimplemented code
3093576a JNI library
bd2895f Merge pull request #371
e72e93a Add note about y=0 being possible on one of the sextic twists
3f8fdfb build: fix x86_64 asm detection for some compilers
e5a9047 [Trivial] Remove double semicolons
c18b869 Merge pull request #360
3026daa Merge pull request #302
03d4611 Add sage verification script for the group laws
a965937 Merge pull request #361
83221ec Add experimental features to configure
5d4c5a3 Prevent damage_array in the signature test from going out of bounds.
419bf7f Merge pull request #356
03d84a4 Benchmark against OpenSSL verification

git-subtree-dir: src/secp256k1
git-subtree-split: 7a49cacd3937311fcb1cb36b6ba3336fca811991
2016-08-16 11:34:11 +02:00

323 lines
12 KiB
Python

# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# exectured. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see http://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(map(numerator, assumeZero))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __div__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(map(numerator, con.zero))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(f)
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(f)
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(numerator(allexprs)).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if f not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
zero = R.ideal(map(numerator, assume.zero))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(map(numerator, assume.zero))
zeroextra = R.ideal(map(numerator, zerox))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if f not in nonzero:
add += ["%s" % f]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if zeroextra.reduce(f) not in nonzero:
ret.add("%s != 0" % zeroextra.reduce(f))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return None
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return "FAIL, %s fails (assuming %s)" % (str(msg), describe)
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return "FAIL, %s fails (assuming %s)" % (str(expl), describe)
if describe != "":
return "OK (assuming %s)" % describe
else:
return "OK"
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)