mirror of
https://github.com/dashpay/dash.git
synced 2024-12-26 04:22:55 +01:00
1760 lines
70 KiB
C++
1760 lines
70 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2020 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <txmempool.h>
|
|
|
|
#include <chain.h>
|
|
#include <coins.h>
|
|
#include <consensus/consensus.h>
|
|
#include <consensus/tx_verify.h>
|
|
#include <consensus/validation.h>
|
|
#include <hash.h>
|
|
#include <policy/fees.h>
|
|
#include <policy/policy.h>
|
|
#include <policy/settings.h>
|
|
#include <reverse_iterator.h>
|
|
#include <util/check.h>
|
|
#include <util/moneystr.h>
|
|
#include <util/system.h>
|
|
#include <util/time.h>
|
|
#include <validationinterface.h>
|
|
|
|
#include <evo/specialtx.h>
|
|
#include <evo/assetlocktx.h>
|
|
#include <evo/providertx.h>
|
|
#include <evo/deterministicmns.h>
|
|
#include <llmq/instantsend.h>
|
|
|
|
#include <cmath>
|
|
#include <optional>
|
|
|
|
// Helpers for modifying CTxMemPool::mapTx, which is a boost multi_index.
|
|
struct update_descendant_state
|
|
{
|
|
update_descendant_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount) :
|
|
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount)
|
|
{}
|
|
|
|
void operator() (CTxMemPoolEntry &e)
|
|
{ e.UpdateDescendantState(modifySize, modifyFee, modifyCount); }
|
|
|
|
private:
|
|
int64_t modifySize;
|
|
CAmount modifyFee;
|
|
int64_t modifyCount;
|
|
};
|
|
|
|
struct update_ancestor_state
|
|
{
|
|
update_ancestor_state(int64_t _modifySize, CAmount _modifyFee, int64_t _modifyCount, int64_t _modifySigOpsCost) :
|
|
modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount), modifySigOpsCost(_modifySigOpsCost)
|
|
{}
|
|
|
|
void operator() (CTxMemPoolEntry &e)
|
|
{ e.UpdateAncestorState(modifySize, modifyFee, modifyCount, modifySigOpsCost); }
|
|
|
|
private:
|
|
int64_t modifySize;
|
|
CAmount modifyFee;
|
|
int64_t modifyCount;
|
|
int64_t modifySigOpsCost;
|
|
};
|
|
|
|
struct update_fee_delta
|
|
{
|
|
explicit update_fee_delta(int64_t _feeDelta) : feeDelta(_feeDelta) { }
|
|
|
|
void operator() (CTxMemPoolEntry &e) { e.UpdateFeeDelta(feeDelta); }
|
|
|
|
private:
|
|
int64_t feeDelta;
|
|
};
|
|
|
|
struct update_lock_points
|
|
{
|
|
explicit update_lock_points(const LockPoints& _lp) : lp(_lp) { }
|
|
|
|
void operator() (CTxMemPoolEntry &e) { e.UpdateLockPoints(lp); }
|
|
|
|
private:
|
|
const LockPoints& lp;
|
|
};
|
|
|
|
bool TestLockPointValidity(CChain& active_chain, const LockPoints& lp)
|
|
{
|
|
AssertLockHeld(cs_main);
|
|
// If there are relative lock times then the maxInputBlock will be set
|
|
// If there are no relative lock times, the LockPoints don't depend on the chain
|
|
if (lp.maxInputBlock) {
|
|
// Check whether active_chain is an extension of the block at which the LockPoints
|
|
// calculation was valid. If not LockPoints are no longer valid
|
|
if (!active_chain.Contains(lp.maxInputBlock)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// LockPoints still valid
|
|
return true;
|
|
}
|
|
|
|
CTxMemPoolEntry::CTxMemPoolEntry(const CTransactionRef& tx, CAmount fee,
|
|
int64_t time, unsigned int entry_height,
|
|
bool spends_coinbase, int64_t sigops_count, LockPoints lp)
|
|
: tx{tx},
|
|
nFee{fee},
|
|
nTxSize(tx->GetTotalSize()),
|
|
nUsageSize{RecursiveDynamicUsage(tx)},
|
|
nTime{time},
|
|
entryHeight{entry_height},
|
|
spendsCoinbase{spends_coinbase},
|
|
sigOpCount{sigops_count},
|
|
lockPoints{lp},
|
|
nSizeWithDescendants{GetTxSize()},
|
|
nModFeesWithDescendants{nFee},
|
|
nSizeWithAncestors{GetTxSize()},
|
|
nModFeesWithAncestors{nFee},
|
|
nSigOpCountWithAncestors{sigOpCount} {}
|
|
|
|
void CTxMemPoolEntry::UpdateFeeDelta(int64_t newFeeDelta)
|
|
{
|
|
nModFeesWithDescendants += newFeeDelta - feeDelta;
|
|
nModFeesWithAncestors += newFeeDelta - feeDelta;
|
|
feeDelta = newFeeDelta;
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateLockPoints(const LockPoints& lp)
|
|
{
|
|
lockPoints = lp;
|
|
}
|
|
|
|
size_t CTxMemPoolEntry::GetTxSize() const
|
|
{
|
|
return GetVirtualTransactionSize(nTxSize, sigOpCount);
|
|
}
|
|
|
|
// Update the given tx for any in-mempool descendants.
|
|
// Assumes that CTxMemPool::m_children is correct for the given tx and all
|
|
// descendants.
|
|
void CTxMemPool::UpdateForDescendants(txiter updateIt, cacheMap &cachedDescendants, const std::set<uint256> &setExclude)
|
|
{
|
|
CTxMemPoolEntry::Children stageEntries, descendants;
|
|
stageEntries = updateIt->GetMemPoolChildrenConst();
|
|
|
|
while (!stageEntries.empty()) {
|
|
const CTxMemPoolEntry& descendant = *stageEntries.begin();
|
|
descendants.insert(descendant);
|
|
stageEntries.erase(descendant);
|
|
const CTxMemPoolEntry::Children& children = descendant.GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& childEntry : children) {
|
|
cacheMap::iterator cacheIt = cachedDescendants.find(mapTx.iterator_to(childEntry));
|
|
if (cacheIt != cachedDescendants.end()) {
|
|
// We've already calculated this one, just add the entries for this set
|
|
// but don't traverse again.
|
|
for (txiter cacheEntry : cacheIt->second) {
|
|
descendants.insert(*cacheEntry);
|
|
}
|
|
} else if (!descendants.count(childEntry)) {
|
|
// Schedule for later processing
|
|
stageEntries.insert(childEntry);
|
|
}
|
|
}
|
|
}
|
|
// descendants now contains all in-mempool descendants of updateIt.
|
|
// Update and add to cached descendant map
|
|
int64_t modifySize = 0;
|
|
CAmount modifyFee = 0;
|
|
int64_t modifyCount = 0;
|
|
for (const CTxMemPoolEntry& descendant : descendants) {
|
|
if (!setExclude.count(descendant.GetTx().GetHash())) {
|
|
modifySize += descendant.GetTxSize();
|
|
modifyFee += descendant.GetModifiedFee();
|
|
modifyCount++;
|
|
cachedDescendants[updateIt].insert(mapTx.iterator_to(descendant));
|
|
// Update ancestor state for each descendant
|
|
mapTx.modify(mapTx.iterator_to(descendant), update_ancestor_state(updateIt->GetTxSize(), updateIt->GetModifiedFee(), 1, updateIt->GetSigOpCount()));
|
|
}
|
|
}
|
|
mapTx.modify(updateIt, update_descendant_state(modifySize, modifyFee, modifyCount));
|
|
}
|
|
|
|
// vHashesToUpdate is the set of transaction hashes from a disconnected block
|
|
// which has been re-added to the mempool.
|
|
// for each entry, look for descendants that are outside vHashesToUpdate, and
|
|
// add fee/size information for such descendants to the parent.
|
|
// for each such descendant, also update the ancestor state to include the parent.
|
|
void CTxMemPool::UpdateTransactionsFromBlock(const std::vector<uint256> &vHashesToUpdate)
|
|
{
|
|
AssertLockHeld(cs);
|
|
// For each entry in vHashesToUpdate, store the set of in-mempool, but not
|
|
// in-vHashesToUpdate transactions, so that we don't have to recalculate
|
|
// descendants when we come across a previously seen entry.
|
|
cacheMap mapMemPoolDescendantsToUpdate;
|
|
|
|
// Use a set for lookups into vHashesToUpdate (these entries are already
|
|
// accounted for in the state of their ancestors)
|
|
std::set<uint256> setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end());
|
|
|
|
// Iterate in reverse, so that whenever we are looking at a transaction
|
|
// we are sure that all in-mempool descendants have already been processed.
|
|
// This maximizes the benefit of the descendant cache and guarantees that
|
|
// CTxMemPool::m_children will be updated, an assumption made in
|
|
// UpdateForDescendants.
|
|
for (const uint256 &hash : reverse_iterate(vHashesToUpdate)) {
|
|
// calculate children from mapNextTx
|
|
txiter it = mapTx.find(hash);
|
|
if (it == mapTx.end()) {
|
|
continue;
|
|
}
|
|
auto iter = mapNextTx.lower_bound(COutPoint(hash, 0));
|
|
// First calculate the children, and update CTxMemPool::m_children to
|
|
// include them, and update their CTxMemPoolEntry::m_parents to include this tx.
|
|
// we cache the in-mempool children to avoid duplicate updates
|
|
{
|
|
WITH_FRESH_EPOCH(m_epoch);
|
|
for (; iter != mapNextTx.end() && iter->first->hash == hash; ++iter) {
|
|
const uint256 &childHash = iter->second->GetHash();
|
|
txiter childIter = mapTx.find(childHash);
|
|
assert(childIter != mapTx.end());
|
|
// We can skip updating entries we've encountered before or that
|
|
// are in the block (which are already accounted for).
|
|
if (!visited(childIter) && !setAlreadyIncluded.count(childHash)) {
|
|
UpdateChild(it, childIter, true);
|
|
UpdateParent(childIter, it, true);
|
|
}
|
|
}
|
|
} // release epoch guard for UpdateForDescendants
|
|
UpdateForDescendants(it, mapMemPoolDescendantsToUpdate, setAlreadyIncluded);
|
|
}
|
|
}
|
|
|
|
bool CTxMemPool::CalculateAncestorsAndCheckLimits(size_t entry_size,
|
|
size_t entry_count,
|
|
setEntries& setAncestors,
|
|
CTxMemPoolEntry::Parents& staged_ancestors,
|
|
uint64_t limitAncestorCount,
|
|
uint64_t limitAncestorSize,
|
|
uint64_t limitDescendantCount,
|
|
uint64_t limitDescendantSize,
|
|
std::string &errString) const
|
|
{
|
|
size_t totalSizeWithAncestors = entry_size;
|
|
|
|
while (!staged_ancestors.empty()) {
|
|
const CTxMemPoolEntry& stage = staged_ancestors.begin()->get();
|
|
txiter stageit = mapTx.iterator_to(stage);
|
|
|
|
setAncestors.insert(stageit);
|
|
staged_ancestors.erase(stage);
|
|
totalSizeWithAncestors += stageit->GetTxSize();
|
|
|
|
if (stageit->GetSizeWithDescendants() + entry_size > limitDescendantSize) {
|
|
errString = strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantSize);
|
|
return false;
|
|
} else if (stageit->GetCountWithDescendants() + entry_count > limitDescendantCount) {
|
|
errString = strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantCount);
|
|
return false;
|
|
} else if (totalSizeWithAncestors > limitAncestorSize) {
|
|
errString = strprintf("exceeds ancestor size limit [limit: %u]", limitAncestorSize);
|
|
return false;
|
|
}
|
|
|
|
const CTxMemPoolEntry::Parents& parents = stageit->GetMemPoolParentsConst();
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
txiter parent_it = mapTx.iterator_to(parent);
|
|
|
|
// If this is a new ancestor, add it.
|
|
if (setAncestors.count(parent_it) == 0) {
|
|
staged_ancestors.insert(parent);
|
|
}
|
|
if (staged_ancestors.size() + setAncestors.size() + entry_count > limitAncestorCount) {
|
|
errString = strprintf("too many unconfirmed ancestors [limit: %u]", limitAncestorCount);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CTxMemPool::CheckPackageLimits(const Package& package,
|
|
uint64_t limitAncestorCount,
|
|
uint64_t limitAncestorSize,
|
|
uint64_t limitDescendantCount,
|
|
uint64_t limitDescendantSize,
|
|
std::string &errString) const
|
|
{
|
|
CTxMemPoolEntry::Parents staged_ancestors;
|
|
size_t total_size = 0;
|
|
for (const auto& tx : package) {
|
|
total_size += GetVirtualTransactionSize(*tx);
|
|
for (const auto& input : tx->vin) {
|
|
std::optional<txiter> piter = GetIter(input.prevout.hash);
|
|
if (piter) {
|
|
staged_ancestors.insert(**piter);
|
|
if (staged_ancestors.size() + package.size() > limitAncestorCount) {
|
|
errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// When multiple transactions are passed in, the ancestors and descendants of all transactions
|
|
// considered together must be within limits even if they are not interdependent. This may be
|
|
// stricter than the limits for each individual transaction.
|
|
setEntries setAncestors;
|
|
const auto ret = CalculateAncestorsAndCheckLimits(total_size, package.size(),
|
|
setAncestors, staged_ancestors,
|
|
limitAncestorCount, limitAncestorSize,
|
|
limitDescendantCount, limitDescendantSize, errString);
|
|
// It's possible to overestimate the ancestor/descendant totals.
|
|
if (!ret) errString.insert(0, "possibly ");
|
|
return ret;
|
|
}
|
|
|
|
bool CTxMemPool::CalculateMemPoolAncestors(const CTxMemPoolEntry &entry,
|
|
setEntries &setAncestors,
|
|
uint64_t limitAncestorCount,
|
|
uint64_t limitAncestorSize,
|
|
uint64_t limitDescendantCount,
|
|
uint64_t limitDescendantSize,
|
|
std::string &errString,
|
|
bool fSearchForParents /* = true */) const
|
|
{
|
|
CTxMemPoolEntry::Parents staged_ancestors;
|
|
const CTransaction &tx = entry.GetTx();
|
|
|
|
if (fSearchForParents) {
|
|
// Get parents of this transaction that are in the mempool
|
|
// GetMemPoolParents() is only valid for entries in the mempool, so we
|
|
// iterate mapTx to find parents.
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++) {
|
|
std::optional<txiter> piter = GetIter(tx.vin[i].prevout.hash);
|
|
if (piter) {
|
|
staged_ancestors.insert(**piter);
|
|
if (staged_ancestors.size() + 1 > limitAncestorCount) {
|
|
errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// If we're not searching for parents, we require this to already be an
|
|
// entry in the mempool and use the entry's cached parents.
|
|
txiter it = mapTx.iterator_to(entry);
|
|
staged_ancestors = it->GetMemPoolParentsConst();
|
|
}
|
|
|
|
return CalculateAncestorsAndCheckLimits(entry.GetTxSize(), /* entry_count */ 1,
|
|
setAncestors, staged_ancestors,
|
|
limitAncestorCount, limitAncestorSize,
|
|
limitDescendantCount, limitDescendantSize, errString);
|
|
}
|
|
|
|
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors)
|
|
{
|
|
const CTxMemPoolEntry::Parents& parents = it->GetMemPoolParentsConst();
|
|
// add or remove this tx as a child of each parent
|
|
for (const CTxMemPoolEntry& parent : parents) {
|
|
UpdateChild(mapTx.iterator_to(parent), it, add);
|
|
}
|
|
const int64_t updateCount = (add ? 1 : -1);
|
|
const int64_t updateSize = updateCount * it->GetTxSize();
|
|
const CAmount updateFee = updateCount * it->GetModifiedFee();
|
|
for (txiter ancestorIt : setAncestors) {
|
|
mapTx.modify(ancestorIt, update_descendant_state(updateSize, updateFee, updateCount));
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateEntryForAncestors(txiter it, const setEntries &setAncestors)
|
|
{
|
|
int64_t updateCount = setAncestors.size();
|
|
int64_t updateSize = 0;
|
|
CAmount updateFee = 0;
|
|
int updateSigOps = 0;
|
|
for (txiter ancestorIt : setAncestors) {
|
|
updateSize += ancestorIt->GetTxSize();
|
|
updateFee += ancestorIt->GetModifiedFee();
|
|
updateSigOps += ancestorIt->GetSigOpCount();
|
|
}
|
|
mapTx.modify(it, update_ancestor_state(updateSize, updateFee, updateCount, updateSigOps));
|
|
}
|
|
|
|
void CTxMemPool::UpdateChildrenForRemoval(txiter it)
|
|
{
|
|
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& updateIt : children) {
|
|
UpdateParent(mapTx.iterator_to(updateIt), it, false);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants)
|
|
{
|
|
// For each entry, walk back all ancestors and decrement size associated with this
|
|
// transaction
|
|
const uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
|
|
if (updateDescendants) {
|
|
// updateDescendants should be true whenever we're not recursively
|
|
// removing a tx and all its descendants, eg when a transaction is
|
|
// confirmed in a block.
|
|
// Here we only update statistics and not data in CTxMemPool::Parents
|
|
// and CTxMemPoolEntry::Children (which we need to preserve until we're
|
|
// finished with all operations that need to traverse the mempool).
|
|
for (txiter removeIt : entriesToRemove) {
|
|
setEntries setDescendants;
|
|
CalculateDescendants(removeIt, setDescendants);
|
|
setDescendants.erase(removeIt); // don't update state for self
|
|
int64_t modifySize = -((int64_t)removeIt->GetTxSize());
|
|
CAmount modifyFee = -removeIt->GetModifiedFee();
|
|
int modifySigOps = -removeIt->GetSigOpCount();
|
|
for (txiter dit : setDescendants) {
|
|
mapTx.modify(dit, update_ancestor_state(modifySize, modifyFee, -1, modifySigOps));
|
|
}
|
|
}
|
|
}
|
|
for (txiter removeIt : entriesToRemove) {
|
|
setEntries setAncestors;
|
|
const CTxMemPoolEntry &entry = *removeIt;
|
|
std::string dummy;
|
|
// Since this is a tx that is already in the mempool, we can call CMPA
|
|
// with fSearchForParents = false. If the mempool is in a consistent
|
|
// state, then using true or false should both be correct, though false
|
|
// should be a bit faster.
|
|
// However, if we happen to be in the middle of processing a reorg, then
|
|
// the mempool can be in an inconsistent state. In this case, the set
|
|
// of ancestors reachable via GetMemPoolParents()/GetMemPoolChildren()
|
|
// will be the same as the set of ancestors whose packages include this
|
|
// transaction, because when we add a new transaction to the mempool in
|
|
// addUnchecked(), we assume it has no children, and in the case of a
|
|
// reorg where that assumption is false, the in-mempool children aren't
|
|
// linked to the in-block tx's until UpdateTransactionsFromBlock() is
|
|
// called.
|
|
// So if we're being called during a reorg, ie before
|
|
// UpdateTransactionsFromBlock() has been called, then
|
|
// GetMemPoolParents()/GetMemPoolChildren() will differ from the set of
|
|
// mempool parents we'd calculate by searching, and it's important that
|
|
// we use the cached notion of ancestor transactions as the set of
|
|
// things to update for removal.
|
|
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);
|
|
// Note that UpdateAncestorsOf severs the child links that point to
|
|
// removeIt in the entries for the parents of removeIt.
|
|
UpdateAncestorsOf(false, removeIt, setAncestors);
|
|
}
|
|
// After updating all the ancestor sizes, we can now sever the link between each
|
|
// transaction being removed and any mempool children (ie, update CTxMemPoolEntry::m_parents
|
|
// for each direct child of a transaction being removed).
|
|
for (txiter removeIt : entriesToRemove) {
|
|
UpdateChildrenForRemoval(removeIt);
|
|
}
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateDescendantState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount)
|
|
{
|
|
nSizeWithDescendants += modifySize;
|
|
assert(int64_t(nSizeWithDescendants) > 0);
|
|
nModFeesWithDescendants += modifyFee;
|
|
nCountWithDescendants += modifyCount;
|
|
assert(int64_t(nCountWithDescendants) > 0);
|
|
}
|
|
|
|
void CTxMemPoolEntry::UpdateAncestorState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount, int64_t modifySigOps)
|
|
{
|
|
nSizeWithAncestors += modifySize;
|
|
assert(int64_t(nSizeWithAncestors) > 0);
|
|
nModFeesWithAncestors += modifyFee;
|
|
nCountWithAncestors += modifyCount;
|
|
assert(int64_t(nCountWithAncestors) > 0);
|
|
nSigOpCountWithAncestors += modifySigOps;
|
|
assert(int(nSigOpCountWithAncestors) >= 0);
|
|
}
|
|
|
|
CTxMemPool::CTxMemPool(CBlockPolicyEstimator* estimator, int check_ratio)
|
|
: m_check_ratio(check_ratio), minerPolicyEstimator(estimator)
|
|
{
|
|
_clear(); //lock free clear
|
|
}
|
|
|
|
void CTxMemPool::ConnectManagers(gsl::not_null<CDeterministicMNManager*> dmnman)
|
|
{
|
|
// Do not allow double-initialization
|
|
assert(m_dmnman == nullptr);
|
|
m_dmnman = dmnman;
|
|
}
|
|
|
|
bool CTxMemPool::isSpent(const COutPoint& outpoint) const
|
|
{
|
|
LOCK(cs);
|
|
return mapNextTx.count(outpoint);
|
|
}
|
|
|
|
unsigned int CTxMemPool::GetTransactionsUpdated() const
|
|
{
|
|
return nTransactionsUpdated;
|
|
}
|
|
|
|
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
|
|
{
|
|
nTransactionsUpdated += n;
|
|
}
|
|
|
|
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, setEntries &setAncestors, bool validFeeEstimate)
|
|
{
|
|
// Add to memory pool without checking anything.
|
|
// Used by AcceptToMemoryPool(), which DOES do
|
|
// all the appropriate checks.
|
|
indexed_transaction_set::iterator newit = mapTx.insert(entry).first;
|
|
|
|
// Update transaction for any feeDelta created by PrioritiseTransaction
|
|
CAmount delta{0};
|
|
ApplyDelta(entry.GetTx().GetHash(), delta);
|
|
if (delta) {
|
|
mapTx.modify(newit, update_fee_delta(delta));
|
|
}
|
|
|
|
// Update cachedInnerUsage to include contained transaction's usage.
|
|
// (When we update the entry for in-mempool parents, memory usage will be
|
|
// further updated.)
|
|
cachedInnerUsage += entry.DynamicMemoryUsage();
|
|
|
|
const CTransaction& tx = newit->GetTx();
|
|
std::set<uint256> setParentTransactions;
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++) {
|
|
mapNextTx.insert(std::make_pair(&tx.vin[i].prevout, &tx));
|
|
setParentTransactions.insert(tx.vin[i].prevout.hash);
|
|
}
|
|
// Don't bother worrying about child transactions of this one.
|
|
// Normal case of a new transaction arriving is that there can't be any
|
|
// children, because such children would be orphans.
|
|
// An exception to that is if a transaction enters that used to be in a block.
|
|
// In that case, our disconnect block logic will call UpdateTransactionsFromBlock
|
|
// to clean up the mess we're leaving here.
|
|
|
|
// Update ancestors with information about this tx
|
|
for (const auto& pit : GetIterSet(setParentTransactions)) {
|
|
UpdateParent(newit, pit, true);
|
|
}
|
|
UpdateAncestorsOf(true, newit, setAncestors);
|
|
UpdateEntryForAncestors(newit, setAncestors);
|
|
|
|
nTransactionsUpdated++;
|
|
totalTxSize += entry.GetTxSize();
|
|
m_total_fee += entry.GetFee();
|
|
if (minerPolicyEstimator) {
|
|
minerPolicyEstimator->processTransaction(entry, validFeeEstimate);
|
|
}
|
|
|
|
vTxHashes.emplace_back(entry.GetTx().GetHash(), newit);
|
|
newit->vTxHashesIdx = vTxHashes.size() - 1;
|
|
|
|
// Invalid ProTxes should never get this far because transactions should be
|
|
// fully checked by AcceptToMemoryPool() at this point, so we just assume that
|
|
// everything is fine here.
|
|
if (m_dmnman) {
|
|
addUncheckedProTx(newit, tx);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::addAddressIndex(const CTxMemPoolEntry& entry, const CCoinsViewCache& view)
|
|
{
|
|
LOCK(cs);
|
|
const CTransaction& tx = entry.GetTx();
|
|
std::vector<CMempoolAddressDeltaKey> inserted;
|
|
|
|
uint256 txhash = tx.GetHash();
|
|
for (unsigned int j = 0; j < tx.vin.size(); j++) {
|
|
const CTxIn input = tx.vin[j];
|
|
const Coin& coin = view.AccessCoin(input.prevout);
|
|
const CTxOut &prevout = coin.out;
|
|
|
|
AddressType address_type{AddressType::UNKNOWN};
|
|
uint160 address_bytes;
|
|
|
|
if (!AddressBytesFromScript(prevout.scriptPubKey, address_type, address_bytes)) {
|
|
continue;
|
|
}
|
|
|
|
CMempoolAddressDeltaKey key(address_type, address_bytes, txhash, j, /* tx_spent */ true);
|
|
CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n);
|
|
mapAddress.insert(std::make_pair(key, delta));
|
|
inserted.push_back(key);
|
|
}
|
|
|
|
for (unsigned int k = 0; k < tx.vout.size(); k++) {
|
|
const CTxOut &out = tx.vout[k];
|
|
|
|
AddressType address_type{AddressType::UNKNOWN};
|
|
uint160 address_bytes;
|
|
|
|
if (!AddressBytesFromScript(out.scriptPubKey, address_type, address_bytes)) {
|
|
continue;
|
|
}
|
|
|
|
CMempoolAddressDeltaKey key(address_type, address_bytes, txhash, k, /* tx_spent */ false);
|
|
mapAddress.insert(std::make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue)));
|
|
inserted.push_back(key);
|
|
}
|
|
|
|
mapAddressInserted.insert(std::make_pair(txhash, inserted));
|
|
}
|
|
|
|
bool CTxMemPool::getAddressIndex(const std::vector<CMempoolAddressDeltaKey>& addresses,
|
|
std::vector<CMempoolAddressDeltaEntry>& results) const
|
|
{
|
|
LOCK(cs);
|
|
for (const auto& address : addresses) {
|
|
addressDeltaMap::const_iterator ait = mapAddress.lower_bound(address);
|
|
while (ait != mapAddress.end() && (*ait).first.m_address_bytes == address.m_address_bytes
|
|
&& (*ait).first.m_address_type == address.m_address_type) {
|
|
results.push_back(*ait);
|
|
ait++;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CTxMemPool::removeAddressIndex(const uint256 txhash)
|
|
{
|
|
LOCK(cs);
|
|
addressDeltaMapInserted::iterator it = mapAddressInserted.find(txhash);
|
|
|
|
if (it != mapAddressInserted.end()) {
|
|
std::vector<CMempoolAddressDeltaKey> keys = (*it).second;
|
|
for (std::vector<CMempoolAddressDeltaKey>::iterator mit = keys.begin(); mit != keys.end(); mit++) {
|
|
mapAddress.erase(*mit);
|
|
}
|
|
mapAddressInserted.erase(it);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CTxMemPool::addSpentIndex(const CTxMemPoolEntry& entry, const CCoinsViewCache& view)
|
|
{
|
|
LOCK(cs);
|
|
|
|
const CTransaction& tx = entry.GetTx();
|
|
std::vector<CSpentIndexKey> inserted;
|
|
|
|
uint256 txhash = tx.GetHash();
|
|
for (unsigned int j = 0; j < tx.vin.size(); j++) {
|
|
const CTxIn input = tx.vin[j];
|
|
const Coin& coin = view.AccessCoin(input.prevout);
|
|
const CTxOut &prevout = coin.out;
|
|
|
|
AddressType address_type{AddressType::UNKNOWN};
|
|
uint160 address_bytes;
|
|
|
|
if (!AddressBytesFromScript(prevout.scriptPubKey, address_type, address_bytes)) {
|
|
continue;
|
|
}
|
|
|
|
CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n);
|
|
CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, address_type, address_bytes);
|
|
|
|
mapSpent.insert(std::make_pair(key, value));
|
|
inserted.push_back(key);
|
|
}
|
|
|
|
mapSpentInserted.insert(make_pair(txhash, inserted));
|
|
}
|
|
|
|
bool CTxMemPool::getSpentIndex(const CSpentIndexKey& key, CSpentIndexValue& value) const
|
|
{
|
|
LOCK(cs);
|
|
mapSpentIndex::const_iterator it = mapSpent.find(key);
|
|
|
|
if (it != mapSpent.end()) {
|
|
value = it->second;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CTxMemPool::removeSpentIndex(const uint256 txhash)
|
|
{
|
|
LOCK(cs);
|
|
mapSpentIndexInserted::iterator it = mapSpentInserted.find(txhash);
|
|
|
|
if (it != mapSpentInserted.end()) {
|
|
std::vector<CSpentIndexKey> keys = (*it).second;
|
|
for (std::vector<CSpentIndexKey>::iterator mit = keys.begin(); mit != keys.end(); mit++) {
|
|
mapSpent.erase(*mit);
|
|
}
|
|
mapSpentInserted.erase(it);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CTxMemPool::addUncheckedProTx(indexed_transaction_set::iterator& newit, const CTransaction& tx)
|
|
{
|
|
assert(m_dmnman);
|
|
|
|
if (tx.nType == TRANSACTION_PROVIDER_REGISTER) {
|
|
auto proTx = *Assert(GetTxPayload<CProRegTx>(tx));
|
|
if (!proTx.collateralOutpoint.hash.IsNull()) {
|
|
mapProTxRefs.emplace(tx.GetHash(), proTx.collateralOutpoint.hash);
|
|
}
|
|
mapProTxAddresses.emplace(proTx.addr, tx.GetHash());
|
|
mapProTxPubKeyIDs.emplace(proTx.keyIDOwner, tx.GetHash());
|
|
mapProTxBlsPubKeyHashes.emplace(proTx.pubKeyOperator.GetHash(), tx.GetHash());
|
|
if (!proTx.collateralOutpoint.hash.IsNull()) {
|
|
mapProTxCollaterals.emplace(proTx.collateralOutpoint, tx.GetHash());
|
|
} else {
|
|
mapProTxCollaterals.emplace(COutPoint(tx.GetHash(), proTx.collateralOutpoint.n), tx.GetHash());
|
|
}
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) {
|
|
auto proTx = *Assert(GetTxPayload<CProUpServTx>(tx));
|
|
mapProTxRefs.emplace(proTx.proTxHash, tx.GetHash());
|
|
mapProTxAddresses.emplace(proTx.addr, tx.GetHash());
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) {
|
|
auto proTx = *Assert(GetTxPayload<CProUpRegTx>(tx));
|
|
mapProTxRefs.emplace(proTx.proTxHash, tx.GetHash());
|
|
mapProTxBlsPubKeyHashes.emplace(proTx.pubKeyOperator.GetHash(), tx.GetHash());
|
|
auto dmn = Assert(m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash));
|
|
newit->validForProTxKey = ::SerializeHash(dmn->pdmnState->pubKeyOperator);
|
|
if (dmn->pdmnState->pubKeyOperator != proTx.pubKeyOperator) {
|
|
newit->isKeyChangeProTx = true;
|
|
}
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) {
|
|
auto proTx = *Assert(GetTxPayload<CProUpRevTx>(tx));
|
|
mapProTxRefs.emplace(proTx.proTxHash, tx.GetHash());
|
|
auto dmn = Assert(m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash));
|
|
newit->validForProTxKey = ::SerializeHash(dmn->pdmnState->pubKeyOperator);
|
|
if (dmn->pdmnState->pubKeyOperator.Get() != CBLSPublicKey()) {
|
|
newit->isKeyChangeProTx = true;
|
|
}
|
|
} else if (tx.nType == TRANSACTION_ASSET_UNLOCK) {
|
|
auto assetUnlockTx = *Assert(GetTxPayload<CAssetUnlockPayload>(tx));
|
|
mapAssetUnlockExpiry.insert({tx.GetHash(), assetUnlockTx.getHeightToExpiry()});
|
|
} else if (tx.nType == TRANSACTION_MNHF_SIGNAL) {
|
|
PrioritiseTransaction(tx.GetHash(), 0.1 * COIN);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason)
|
|
{
|
|
// We increment mempool sequence value no matter removal reason
|
|
// even if not directly reported below.
|
|
uint64_t mempool_sequence = GetAndIncrementSequence();
|
|
|
|
if (reason != MemPoolRemovalReason::BLOCK) {
|
|
// Notify clients that a transaction has been removed from the mempool
|
|
// for any reason except being included in a block. Clients interested
|
|
// in transactions included in blocks can subscribe to the BlockConnected
|
|
// notification.
|
|
GetMainSignals().TransactionRemovedFromMempool(it->GetSharedTx(), reason, mempool_sequence);
|
|
}
|
|
|
|
const uint256 hash = it->GetTx().GetHash();
|
|
for (const CTxIn& txin : it->GetTx().vin)
|
|
mapNextTx.erase(txin.prevout);
|
|
|
|
RemoveUnbroadcastTx(hash, true /* add logging because unchecked */ );
|
|
|
|
if (vTxHashes.size() > 1) {
|
|
vTxHashes[it->vTxHashesIdx] = std::move(vTxHashes.back());
|
|
vTxHashes[it->vTxHashesIdx].second->vTxHashesIdx = it->vTxHashesIdx;
|
|
vTxHashes.pop_back();
|
|
if (vTxHashes.size() * 2 < vTxHashes.capacity())
|
|
vTxHashes.shrink_to_fit();
|
|
} else
|
|
vTxHashes.clear();
|
|
|
|
if (m_dmnman) {
|
|
removeUncheckedProTx(it->GetTx());
|
|
}
|
|
|
|
totalTxSize -= it->GetTxSize();
|
|
m_total_fee -= it->GetFee();
|
|
cachedInnerUsage -= it->DynamicMemoryUsage();
|
|
cachedInnerUsage -= memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
|
|
mapTx.erase(it);
|
|
nTransactionsUpdated++;
|
|
if (minerPolicyEstimator) {minerPolicyEstimator->removeTx(hash, false);}
|
|
removeAddressIndex(hash);
|
|
removeSpentIndex(hash);
|
|
}
|
|
|
|
void CTxMemPool::removeUncheckedProTx(const CTransaction& tx)
|
|
{
|
|
auto eraseProTxRef = [&](const uint256& proTxHash, const uint256& txHash) {
|
|
auto its = mapProTxRefs.equal_range(proTxHash);
|
|
for (auto it = its.first; it != its.second;) {
|
|
if (it->second == txHash) {
|
|
it = mapProTxRefs.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
};
|
|
|
|
if (tx.nType == TRANSACTION_PROVIDER_REGISTER) {
|
|
auto proTx = *Assert(GetTxPayload<CProRegTx>(tx));
|
|
if (!proTx.collateralOutpoint.IsNull()) {
|
|
eraseProTxRef(tx.GetHash(), proTx.collateralOutpoint.hash);
|
|
}
|
|
mapProTxAddresses.erase(proTx.addr);
|
|
mapProTxPubKeyIDs.erase(proTx.keyIDOwner);
|
|
mapProTxBlsPubKeyHashes.erase(proTx.pubKeyOperator.GetHash());
|
|
mapProTxCollaterals.erase(proTx.collateralOutpoint);
|
|
mapProTxCollaterals.erase(COutPoint(tx.GetHash(), proTx.collateralOutpoint.n));
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) {
|
|
auto proTx = *Assert(GetTxPayload<CProUpServTx>(tx));
|
|
eraseProTxRef(proTx.proTxHash, tx.GetHash());
|
|
mapProTxAddresses.erase(proTx.addr);
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) {
|
|
auto proTx = *Assert(GetTxPayload<CProUpRegTx>(tx));
|
|
eraseProTxRef(proTx.proTxHash, tx.GetHash());
|
|
mapProTxBlsPubKeyHashes.erase(proTx.pubKeyOperator.GetHash());
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) {
|
|
auto proTx = *Assert(GetTxPayload<CProUpRevTx>(tx));
|
|
eraseProTxRef(proTx.proTxHash, tx.GetHash());
|
|
} else if (tx.nType == TRANSACTION_ASSET_UNLOCK) {
|
|
mapAssetUnlockExpiry.erase(tx.GetHash());
|
|
}
|
|
}
|
|
|
|
// Calculates descendants of entry that are not already in setDescendants, and adds to
|
|
// setDescendants. Assumes entryit is already a tx in the mempool and CTxMemPoolEntry::m_children
|
|
// is correct for tx and all descendants.
|
|
// Also assumes that if an entry is in setDescendants already, then all
|
|
// in-mempool descendants of it are already in setDescendants as well, so that we
|
|
// can save time by not iterating over those entries.
|
|
void CTxMemPool::CalculateDescendants(txiter entryit, setEntries& setDescendants) const
|
|
{
|
|
setEntries stage;
|
|
if (setDescendants.count(entryit) == 0) {
|
|
stage.insert(entryit);
|
|
}
|
|
// Traverse down the children of entry, only adding children that are not
|
|
// accounted for in setDescendants already (because those children have either
|
|
// already been walked, or will be walked in this iteration).
|
|
while (!stage.empty()) {
|
|
txiter it = *stage.begin();
|
|
setDescendants.insert(it);
|
|
stage.erase(it);
|
|
|
|
const CTxMemPoolEntry::Children& children = it->GetMemPoolChildrenConst();
|
|
for (const CTxMemPoolEntry& child : children) {
|
|
txiter childiter = mapTx.iterator_to(child);
|
|
if (!setDescendants.count(childiter)) {
|
|
stage.insert(childiter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeRecursive(const CTransaction &origTx, MemPoolRemovalReason reason)
|
|
{
|
|
// Remove transaction from memory pool
|
|
AssertLockHeld(cs);
|
|
setEntries txToRemove;
|
|
txiter origit = mapTx.find(origTx.GetHash());
|
|
if (origit != mapTx.end()) {
|
|
txToRemove.insert(origit);
|
|
} else {
|
|
// When recursively removing but origTx isn't in the mempool
|
|
// be sure to remove any children that are in the pool. This can
|
|
// happen during chain re-orgs if origTx isn't re-accepted into
|
|
// the mempool for any reason.
|
|
for (unsigned int i = 0; i < origTx.vout.size(); i++) {
|
|
auto it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
|
|
if (it == mapNextTx.end())
|
|
continue;
|
|
txiter nextit = mapTx.find(it->second->GetHash());
|
|
assert(nextit != mapTx.end());
|
|
txToRemove.insert(nextit);
|
|
}
|
|
}
|
|
setEntries setAllRemoves;
|
|
for (txiter it : txToRemove) {
|
|
CalculateDescendants(it, setAllRemoves);
|
|
}
|
|
|
|
RemoveStaged(setAllRemoves, false, reason);
|
|
}
|
|
|
|
void CTxMemPool::removeForReorg(CChain& chain, std::function<bool(txiter)> check_final_and_mature) EXCLUSIVE_LOCKS_REQUIRED(cs_main)
|
|
{
|
|
// Remove transactions spending a coinbase which are now immature and no-longer-final transactions
|
|
AssertLockHeld(cs);
|
|
AssertLockHeld(::cs_main);
|
|
|
|
setEntries txToRemove;
|
|
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
|
|
if (check_final_and_mature(it)) txToRemove.insert(it);
|
|
}
|
|
setEntries setAllRemoves;
|
|
for (txiter it : txToRemove) {
|
|
CalculateDescendants(it, setAllRemoves);
|
|
}
|
|
RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG);
|
|
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
|
|
const LockPoints lp{it->GetLockPoints()};
|
|
if (!TestLockPointValidity(chain, lp)) {
|
|
mapTx.modify(it, update_lock_points(lp));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeConflicts(const CTransaction &tx)
|
|
{
|
|
// Remove transactions which depend on inputs of tx, recursively
|
|
AssertLockHeld(cs);
|
|
for (const CTxIn &txin : tx.vin) {
|
|
auto it = mapNextTx.find(txin.prevout);
|
|
if (it != mapNextTx.end()) {
|
|
const CTransaction &txConflict = *it->second;
|
|
if (txConflict != tx)
|
|
{
|
|
if (txConflict.nType == TRANSACTION_PROVIDER_REGISTER) {
|
|
// Remove all other protxes which refer to this protx
|
|
// NOTE: Can't use equal_range here as every call to removeRecursive might invalidate iterators
|
|
while (true) {
|
|
auto itPro = mapProTxRefs.find(txConflict.GetHash());
|
|
if (itPro == mapProTxRefs.end()) {
|
|
break;
|
|
}
|
|
auto txit = mapTx.find(itPro->second);
|
|
if (txit != mapTx.end()) {
|
|
ClearPrioritisation(txit->GetTx().GetHash());
|
|
removeRecursive(txit->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
} else {
|
|
mapProTxRefs.erase(itPro);
|
|
}
|
|
}
|
|
}
|
|
ClearPrioritisation(txConflict.GetHash());
|
|
removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeProTxPubKeyConflicts(const CTransaction &tx, const CKeyID &keyId)
|
|
{
|
|
if (mapProTxPubKeyIDs.count(keyId)) {
|
|
uint256 conflictHash = mapProTxPubKeyIDs[keyId];
|
|
if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) {
|
|
removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeProTxPubKeyConflicts(const CTransaction &tx, const CBLSLazyPublicKey &pubKey)
|
|
{
|
|
if (mapProTxBlsPubKeyHashes.count(pubKey.GetHash())) {
|
|
uint256 conflictHash = mapProTxBlsPubKeyHashes[pubKey.GetHash()];
|
|
if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) {
|
|
removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeProTxCollateralConflicts(const CTransaction &tx, const COutPoint &collateralOutpoint)
|
|
{
|
|
if (mapProTxCollaterals.count(collateralOutpoint)) {
|
|
uint256 conflictHash = mapProTxCollaterals[collateralOutpoint];
|
|
if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) {
|
|
removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeProTxSpentCollateralConflicts(const CTransaction &tx)
|
|
{
|
|
assert(m_dmnman);
|
|
|
|
// Remove TXs that refer to a MN for which the collateral was spent
|
|
auto removeSpentCollateralConflict = [&](const uint256& proTxHash) {
|
|
// Can't use equal_range here as every call to removeRecursive might invalidate iterators
|
|
AssertLockHeld(cs);
|
|
while (true) {
|
|
auto it = mapProTxRefs.find(proTxHash);
|
|
if (it == mapProTxRefs.end()) {
|
|
break;
|
|
}
|
|
auto conflictIt = mapTx.find(it->second);
|
|
if (conflictIt != mapTx.end()) {
|
|
removeRecursive(conflictIt->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
} else {
|
|
// Should not happen as we track referencing TXs in addUnchecked/removeUnchecked.
|
|
// But lets be on the safe side and not run into an endless loop...
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: found invalid TX ref in mapProTxRefs, proTxHash=%s, txHash=%s\n", __func__, proTxHash.ToString(), it->second.ToString());
|
|
mapProTxRefs.erase(it);
|
|
}
|
|
}
|
|
};
|
|
auto mnList = m_dmnman->GetListAtChainTip();
|
|
for (const auto& in : tx.vin) {
|
|
auto collateralIt = mapProTxCollaterals.find(in.prevout);
|
|
if (collateralIt != mapProTxCollaterals.end()) {
|
|
// These are not yet mined ProRegTxs
|
|
removeSpentCollateralConflict(collateralIt->second);
|
|
}
|
|
auto dmn = mnList.GetMNByCollateral(in.prevout);
|
|
if (dmn) {
|
|
// These are updates referring to a mined ProRegTx
|
|
removeSpentCollateralConflict(dmn->proTxHash);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeProTxKeyChangedConflicts(const CTransaction &tx, const uint256& proTxHash, const uint256& newKeyHash)
|
|
{
|
|
std::set<uint256> conflictingTxs;
|
|
for (auto its = mapProTxRefs.equal_range(proTxHash); its.first != its.second; ++its.first) {
|
|
auto txit = mapTx.find(its.first->second);
|
|
if (txit == mapTx.end()) {
|
|
continue;
|
|
}
|
|
if (txit->validForProTxKey != newKeyHash) {
|
|
conflictingTxs.emplace(txit->GetTx().GetHash());
|
|
}
|
|
}
|
|
for (const auto& txHash : conflictingTxs) {
|
|
auto& tx = mapTx.find(txHash)->GetTx();
|
|
removeRecursive(tx, MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::removeProTxConflicts(const CTransaction &tx)
|
|
{
|
|
removeProTxSpentCollateralConflicts(tx);
|
|
|
|
if (tx.nType == TRANSACTION_PROVIDER_REGISTER) {
|
|
const auto opt_proTx = GetTxPayload<CProRegTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return;
|
|
}
|
|
auto& proTx = *opt_proTx;
|
|
|
|
if (mapProTxAddresses.count(proTx.addr)) {
|
|
uint256 conflictHash = mapProTxAddresses[proTx.addr];
|
|
if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) {
|
|
removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
removeProTxPubKeyConflicts(tx, proTx.keyIDOwner);
|
|
removeProTxPubKeyConflicts(tx, proTx.pubKeyOperator);
|
|
if (!proTx.collateralOutpoint.hash.IsNull()) {
|
|
removeProTxCollateralConflicts(tx, proTx.collateralOutpoint);
|
|
} else {
|
|
removeProTxCollateralConflicts(tx, COutPoint(tx.GetHash(), proTx.collateralOutpoint.n));
|
|
}
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) {
|
|
const auto opt_proTx = GetTxPayload<CProUpServTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return;
|
|
}
|
|
|
|
if (mapProTxAddresses.count(opt_proTx->addr)) {
|
|
uint256 conflictHash = mapProTxAddresses[opt_proTx->addr];
|
|
if (conflictHash != tx.GetHash() && mapTx.count(conflictHash)) {
|
|
removeRecursive(mapTx.find(conflictHash)->GetTx(), MemPoolRemovalReason::CONFLICT);
|
|
}
|
|
}
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) {
|
|
const auto opt_proTx = GetTxPayload<CProUpRegTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return;
|
|
}
|
|
|
|
removeProTxPubKeyConflicts(tx, opt_proTx->pubKeyOperator);
|
|
removeProTxKeyChangedConflicts(tx, opt_proTx->proTxHash, ::SerializeHash(opt_proTx->pubKeyOperator));
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) {
|
|
const auto opt_proTx = GetTxPayload<CProUpRevTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return;
|
|
}
|
|
|
|
removeProTxKeyChangedConflicts(tx, opt_proTx->proTxHash, ::SerializeHash(CBLSPublicKey()));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Called when a block is connected. Removes from mempool and updates the miner fee estimator.
|
|
*/
|
|
void CTxMemPool::removeForBlock(const std::vector<CTransactionRef>& vtx, unsigned int nBlockHeight)
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::vector<const CTxMemPoolEntry*> entries;
|
|
for (const auto& tx : vtx)
|
|
{
|
|
uint256 hash = tx->GetHash();
|
|
|
|
indexed_transaction_set::iterator i = mapTx.find(hash);
|
|
if (i != mapTx.end())
|
|
entries.push_back(&*i);
|
|
}
|
|
// Before the txs in the new block have been removed from the mempool, update policy estimates
|
|
if (minerPolicyEstimator) {minerPolicyEstimator->processBlock(nBlockHeight, entries);}
|
|
for (const auto& tx : vtx)
|
|
{
|
|
txiter it = mapTx.find(tx->GetHash());
|
|
if (it != mapTx.end()) {
|
|
setEntries stage;
|
|
stage.insert(it);
|
|
RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK);
|
|
}
|
|
removeConflicts(*tx);
|
|
if (m_dmnman) {
|
|
removeProTxConflicts(*tx);
|
|
}
|
|
ClearPrioritisation(tx->GetHash());
|
|
}
|
|
lastRollingFeeUpdate = GetTime();
|
|
blockSinceLastRollingFeeBump = true;
|
|
}
|
|
|
|
/**
|
|
* Called when a lenght of chain is increased. Removes from mempool expired asset-unlock transactions
|
|
*/
|
|
void CTxMemPool::removeExpiredAssetUnlock(int nBlockHeight)
|
|
{
|
|
AssertLockHeld(cs);
|
|
// items to removed should be firstly collected to independed list,
|
|
// because removing items by `removeRecursive` changes the mapAssetUnlockExpiry
|
|
std::vector<CTransactionRef> entries;
|
|
for (const auto& item: mapAssetUnlockExpiry) {
|
|
if (item.second < nBlockHeight) {
|
|
entries.push_back(get(item.first));
|
|
}
|
|
}
|
|
for (const auto& tx : entries) {
|
|
removeRecursive(*tx, MemPoolRemovalReason::EXPIRY);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::_clear()
|
|
{
|
|
vTxHashes.clear();
|
|
mapTx.clear();
|
|
mapNextTx.clear();
|
|
mapProTxAddresses.clear();
|
|
mapProTxPubKeyIDs.clear();
|
|
totalTxSize = 0;
|
|
m_total_fee = 0;
|
|
cachedInnerUsage = 0;
|
|
lastRollingFeeUpdate = GetTime();
|
|
blockSinceLastRollingFeeBump = false;
|
|
rollingMinimumFeeRate = 0;
|
|
++nTransactionsUpdated;
|
|
}
|
|
|
|
void CTxMemPool::clear()
|
|
{
|
|
LOCK(cs);
|
|
_clear();
|
|
}
|
|
|
|
void CTxMemPool::check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const
|
|
{
|
|
if (m_check_ratio == 0) return;
|
|
|
|
if (GetRand(m_check_ratio) >= 1) return;
|
|
|
|
AssertLockHeld(::cs_main);
|
|
LOCK(cs);
|
|
LogPrint(BCLog::MEMPOOL, "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
|
|
|
|
uint64_t checkTotal = 0;
|
|
CAmount check_total_fee{0};
|
|
uint64_t innerUsage = 0;
|
|
uint64_t prev_ancestor_count{0};
|
|
|
|
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(&active_coins_tip));
|
|
|
|
for (const auto& it : GetSortedDepthAndScore()) {
|
|
checkTotal += it->GetTxSize();
|
|
check_total_fee += it->GetFee();
|
|
innerUsage += it->DynamicMemoryUsage();
|
|
const CTransaction& tx = it->GetTx();
|
|
innerUsage += memusage::DynamicUsage(it->GetMemPoolParentsConst()) + memusage::DynamicUsage(it->GetMemPoolChildrenConst());
|
|
CTxMemPoolEntry::Parents setParentCheck;
|
|
for (const CTxIn &txin : tx.vin) {
|
|
// Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
|
|
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
|
|
if (it2 != mapTx.end()) {
|
|
const CTransaction& tx2 = it2->GetTx();
|
|
assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
|
|
setParentCheck.insert(*it2);
|
|
}
|
|
// We are iterating through the mempool entries sorted in order by ancestor count.
|
|
// All parents must have been checked before their children and their coins added to
|
|
// the mempoolDuplicate coins cache.
|
|
assert(mempoolDuplicate.HaveCoin(txin.prevout));
|
|
// Check whether its inputs are marked in mapNextTx.
|
|
auto it3 = mapNextTx.find(txin.prevout);
|
|
assert(it3 != mapNextTx.end());
|
|
assert(it3->first == &txin.prevout);
|
|
assert(it3->second == &tx);
|
|
}
|
|
auto comp = [](const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) -> bool {
|
|
return a.GetTx().GetHash() == b.GetTx().GetHash();
|
|
};
|
|
assert(setParentCheck.size() == it->GetMemPoolParentsConst().size());
|
|
assert(std::equal(setParentCheck.begin(), setParentCheck.end(), it->GetMemPoolParentsConst().begin(), comp));
|
|
// Verify ancestor state is correct.
|
|
setEntries setAncestors;
|
|
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
|
|
std::string dummy;
|
|
CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy);
|
|
uint64_t nCountCheck = setAncestors.size() + 1;
|
|
uint64_t nSizeCheck = it->GetTxSize();
|
|
CAmount nFeesCheck = it->GetModifiedFee();
|
|
unsigned int nSigOpCheck = it->GetSigOpCount();
|
|
|
|
for (txiter ancestorIt : setAncestors) {
|
|
nSizeCheck += ancestorIt->GetTxSize();
|
|
nFeesCheck += ancestorIt->GetModifiedFee();
|
|
nSigOpCheck += ancestorIt->GetSigOpCount();
|
|
}
|
|
|
|
assert(it->GetCountWithAncestors() == nCountCheck);
|
|
assert(it->GetSizeWithAncestors() == nSizeCheck);
|
|
assert(it->GetSigOpCountWithAncestors() == nSigOpCheck);
|
|
assert(it->GetModFeesWithAncestors() == nFeesCheck);
|
|
// Sanity check: we are walking in ascending ancestor count order.
|
|
assert(prev_ancestor_count <= it->GetCountWithAncestors());
|
|
prev_ancestor_count = it->GetCountWithAncestors();
|
|
|
|
// Check children against mapNextTx
|
|
CTxMemPoolEntry::Children setChildrenCheck;
|
|
auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0));
|
|
uint64_t child_sizes = 0;
|
|
for (; iter != mapNextTx.end() && iter->first->hash == it->GetTx().GetHash(); ++iter) {
|
|
txiter childit = mapTx.find(iter->second->GetHash());
|
|
assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions
|
|
if (setChildrenCheck.insert(*childit).second) {
|
|
child_sizes += childit->GetTxSize();
|
|
}
|
|
}
|
|
assert(setChildrenCheck.size() == it->GetMemPoolChildrenConst().size());
|
|
assert(std::equal(setChildrenCheck.begin(), setChildrenCheck.end(), it->GetMemPoolChildrenConst().begin(), comp));
|
|
// Also check to make sure size is greater than sum with immediate children.
|
|
// just a sanity check, not definitive that this calc is correct...
|
|
assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize());
|
|
|
|
TxValidationState dummy_state; // Not used. CheckTxInputs() should always pass
|
|
CAmount txfee = 0;
|
|
assert(!tx.IsCoinBase());
|
|
assert(Consensus::CheckTxInputs(tx, dummy_state, mempoolDuplicate, spendheight, txfee));
|
|
for (const auto& input: tx.vin) mempoolDuplicate.SpendCoin(input.prevout);
|
|
AddCoins(mempoolDuplicate, tx, std::numeric_limits<int>::max());
|
|
}
|
|
for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) {
|
|
uint256 hash = it->second->GetHash();
|
|
indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
|
|
const CTransaction& tx = it2->GetTx();
|
|
assert(it2 != mapTx.end());
|
|
assert(&tx == it->second);
|
|
}
|
|
|
|
assert(totalTxSize == checkTotal);
|
|
assert(m_total_fee == check_total_fee);
|
|
assert(innerUsage == cachedInnerUsage);
|
|
}
|
|
|
|
bool CTxMemPool::CompareDepthAndScore(const uint256& hasha, const uint256& hashb)
|
|
{
|
|
/* Return `true` if hasha should be considered sooner than hashb. Namely when:
|
|
* a is not in the mempool, but b is
|
|
* both are in the mempool and a has fewer ancestors than b
|
|
* both are in the mempool and a has a higher score than b
|
|
*/
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator j = mapTx.find(hashb);
|
|
if (j == mapTx.end()) return false;
|
|
indexed_transaction_set::const_iterator i = mapTx.find(hasha);
|
|
if (i == mapTx.end()) return true;
|
|
uint64_t counta = i->GetCountWithAncestors();
|
|
uint64_t countb = j->GetCountWithAncestors();
|
|
if (counta == countb) {
|
|
return CompareTxMemPoolEntryByScore()(*i, *j);
|
|
}
|
|
return counta < countb;
|
|
}
|
|
|
|
namespace {
|
|
class DepthAndScoreComparator
|
|
{
|
|
public:
|
|
bool operator()(const CTxMemPool::indexed_transaction_set::const_iterator& a, const CTxMemPool::indexed_transaction_set::const_iterator& b)
|
|
{
|
|
uint64_t counta = a->GetCountWithAncestors();
|
|
uint64_t countb = b->GetCountWithAncestors();
|
|
if (counta == countb) {
|
|
return CompareTxMemPoolEntryByScore()(*a, *b);
|
|
}
|
|
return counta < countb;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::vector<CTxMemPool::indexed_transaction_set::const_iterator> CTxMemPool::GetSortedDepthAndScore() const
|
|
{
|
|
std::vector<indexed_transaction_set::const_iterator> iters;
|
|
AssertLockHeld(cs);
|
|
|
|
iters.reserve(mapTx.size());
|
|
|
|
for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) {
|
|
iters.push_back(mi);
|
|
}
|
|
std::sort(iters.begin(), iters.end(), DepthAndScoreComparator());
|
|
return iters;
|
|
}
|
|
|
|
void CTxMemPool::queryHashes(std::vector<uint256>& vtxid) const
|
|
{
|
|
LOCK(cs);
|
|
auto iters = GetSortedDepthAndScore();
|
|
|
|
vtxid.clear();
|
|
vtxid.reserve(mapTx.size());
|
|
|
|
for (auto it : iters) {
|
|
vtxid.push_back(it->GetTx().GetHash());
|
|
}
|
|
}
|
|
|
|
static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) {
|
|
return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()};
|
|
}
|
|
|
|
std::vector<TxMempoolInfo> CTxMemPool::infoAll() const
|
|
{
|
|
LOCK(cs);
|
|
auto iters = GetSortedDepthAndScore();
|
|
|
|
std::vector<TxMempoolInfo> ret;
|
|
ret.reserve(mapTx.size());
|
|
for (auto it : iters) {
|
|
ret.push_back(GetInfo(it));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
CTransactionRef CTxMemPool::get(const uint256& hash) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = mapTx.find(hash);
|
|
if (i == mapTx.end())
|
|
return nullptr;
|
|
return i->GetSharedTx();
|
|
}
|
|
|
|
TxMempoolInfo CTxMemPool::info(const uint256& hash) const
|
|
{
|
|
LOCK(cs);
|
|
indexed_transaction_set::const_iterator i = mapTx.find(hash);
|
|
if (i == mapTx.end())
|
|
return TxMempoolInfo();
|
|
return GetInfo(i);
|
|
}
|
|
|
|
bool CTxMemPool::existsProviderTxConflict(const CTransaction &tx) const {
|
|
assert(m_dmnman);
|
|
|
|
LOCK(cs);
|
|
|
|
auto hasKeyChangeInMempool = [&](const uint256& proTxHash) {
|
|
AssertLockHeld(cs);
|
|
for (auto its = mapProTxRefs.equal_range(proTxHash); its.first != its.second; ++its.first) {
|
|
auto txit = mapTx.find(its.first->second);
|
|
if (txit == mapTx.end()) {
|
|
continue;
|
|
}
|
|
if (txit->isKeyChangeProTx) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (tx.nType == TRANSACTION_PROVIDER_REGISTER) {
|
|
const auto opt_proTx = GetTxPayload<CProRegTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return true; // i.e. can't decode payload == conflict
|
|
}
|
|
auto& proTx = *opt_proTx;
|
|
if (mapProTxAddresses.count(proTx.addr) || mapProTxPubKeyIDs.count(proTx.keyIDOwner) || mapProTxBlsPubKeyHashes.count(proTx.pubKeyOperator.GetHash()))
|
|
return true;
|
|
if (!proTx.collateralOutpoint.hash.IsNull()) {
|
|
if (mapProTxCollaterals.count(proTx.collateralOutpoint)) {
|
|
// there is another ProRegTx that refers to the same collateral
|
|
return true;
|
|
}
|
|
if (mapNextTx.count(proTx.collateralOutpoint)) {
|
|
// there is another tx that spends the collateral
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_SERVICE) {
|
|
const auto opt_proTx = GetTxPayload<CProUpServTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return true; // i.e. can't decode payload == conflict
|
|
}
|
|
auto it = mapProTxAddresses.find(opt_proTx->addr);
|
|
return it != mapProTxAddresses.end() && it->second != opt_proTx->proTxHash;
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REGISTRAR) {
|
|
const auto opt_proTx = GetTxPayload<CProUpRegTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return true; // i.e. can't decode payload == conflict
|
|
}
|
|
auto& proTx = *opt_proTx;
|
|
|
|
// this method should only be called with validated ProTxs
|
|
auto dmn = m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash);
|
|
if (!dmn) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Masternode is not in the list, proTxHash: %s\n", __func__, proTx.proTxHash.ToString());
|
|
return true; // i.e. failed to find validated ProTx == conflict
|
|
}
|
|
// only allow one operator key change in the mempool
|
|
if (dmn->pdmnState->pubKeyOperator != proTx.pubKeyOperator) {
|
|
if (hasKeyChangeInMempool(proTx.proTxHash)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
auto it = mapProTxBlsPubKeyHashes.find(proTx.pubKeyOperator.GetHash());
|
|
return it != mapProTxBlsPubKeyHashes.end() && it->second != proTx.proTxHash;
|
|
} else if (tx.nType == TRANSACTION_PROVIDER_UPDATE_REVOKE) {
|
|
const auto opt_proTx = GetTxPayload<CProUpRevTx>(tx);
|
|
if (!opt_proTx) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Invalid transaction payload, tx: %s\n", __func__, tx.GetHash().ToString());
|
|
return true; // i.e. can't decode payload == conflict
|
|
}
|
|
auto& proTx = *opt_proTx;
|
|
// this method should only be called with validated ProTxs
|
|
auto dmn = m_dmnman->GetListAtChainTip().GetMN(proTx.proTxHash);
|
|
if (!dmn) {
|
|
LogPrint(BCLog::MEMPOOL, "%s: ERROR: Masternode is not in the list, proTxHash: %s\n", __func__, proTx.proTxHash.ToString());
|
|
return true; // i.e. failed to find validated ProTx == conflict
|
|
}
|
|
// only allow one operator key change in the mempool
|
|
if (dmn->pdmnState->pubKeyOperator.Get() != CBLSPublicKey()) {
|
|
if (hasKeyChangeInMempool(proTx.proTxHash)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CTxMemPool::PrioritiseTransaction(const uint256& hash, const CAmount& nFeeDelta)
|
|
{
|
|
{
|
|
LOCK(cs);
|
|
CAmount &delta = mapDeltas[hash];
|
|
delta += nFeeDelta;
|
|
txiter it = mapTx.find(hash);
|
|
if (it != mapTx.end()) {
|
|
mapTx.modify(it, update_fee_delta(delta));
|
|
// Now update all ancestors' modified fees with descendants
|
|
setEntries setAncestors;
|
|
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
|
|
std::string dummy;
|
|
CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);
|
|
for (txiter ancestorIt : setAncestors) {
|
|
mapTx.modify(ancestorIt, update_descendant_state(0, nFeeDelta, 0));
|
|
}
|
|
// Now update all descendants' modified fees with ancestors
|
|
setEntries setDescendants;
|
|
CalculateDescendants(it, setDescendants);
|
|
setDescendants.erase(it);
|
|
for (txiter descendantIt : setDescendants) {
|
|
mapTx.modify(descendantIt, update_ancestor_state(0, nFeeDelta, 0, 0));
|
|
}
|
|
++nTransactionsUpdated;
|
|
}
|
|
}
|
|
LogPrint(BCLog::MEMPOOL, "PrioritiseTransaction: %s feerate += %s\n", hash.ToString(), FormatMoney(nFeeDelta));
|
|
}
|
|
|
|
void CTxMemPool::ApplyDelta(const uint256& hash, CAmount &nFeeDelta) const
|
|
{
|
|
AssertLockHeld(cs);
|
|
std::map<uint256, CAmount>::const_iterator pos = mapDeltas.find(hash);
|
|
if (pos == mapDeltas.end())
|
|
return;
|
|
const CAmount &delta = pos->second;
|
|
nFeeDelta += delta;
|
|
}
|
|
|
|
void CTxMemPool::ClearPrioritisation(const uint256& hash)
|
|
{
|
|
AssertLockHeld(cs);
|
|
mapDeltas.erase(hash);
|
|
}
|
|
|
|
const CTransaction* CTxMemPool::GetConflictTx(const COutPoint& prevout) const
|
|
{
|
|
const auto it = mapNextTx.find(prevout);
|
|
return it == mapNextTx.end() ? nullptr : it->second;
|
|
}
|
|
|
|
std::optional<CTxMemPool::txiter> CTxMemPool::GetIter(const uint256& txid) const
|
|
{
|
|
auto it = mapTx.find(txid);
|
|
if (it != mapTx.end()) return it;
|
|
return std::nullopt;
|
|
}
|
|
|
|
CTxMemPool::setEntries CTxMemPool::GetIterSet(const std::set<uint256>& hashes) const
|
|
{
|
|
CTxMemPool::setEntries ret;
|
|
for (const auto& h : hashes) {
|
|
const auto mi = GetIter(h);
|
|
if (mi) ret.insert(*mi);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
|
|
{
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++)
|
|
if (exists(tx.vin[i].prevout.hash))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
|
|
|
|
bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const {
|
|
// Check to see if the inputs are made available by another tx in the package.
|
|
// These Coins would not be available in the underlying CoinsView.
|
|
if (auto it = m_temp_added.find(outpoint); it != m_temp_added.end()) {
|
|
coin = it->second;
|
|
return true;
|
|
}
|
|
|
|
// If an entry in the mempool exists, always return that one, as it's guaranteed to never
|
|
// conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
|
|
// transactions. First checking the underlying cache risks returning a pruned entry instead.
|
|
CTransactionRef ptx = mempool.get(outpoint.hash);
|
|
if (ptx) {
|
|
if (outpoint.n < ptx->vout.size()) {
|
|
coin = Coin(ptx->vout[outpoint.n], MEMPOOL_HEIGHT, false);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
return base->GetCoin(outpoint, coin);
|
|
}
|
|
|
|
void CCoinsViewMemPool::PackageAddTransaction(const CTransactionRef& tx)
|
|
{
|
|
for (unsigned int n = 0; n < tx->vout.size(); ++n) {
|
|
m_temp_added.emplace(COutPoint(tx->GetHash(), n), Coin(tx->vout[n], MEMPOOL_HEIGHT, false));
|
|
}
|
|
}
|
|
|
|
size_t CTxMemPool::DynamicMemoryUsage() const {
|
|
LOCK(cs);
|
|
// Estimate the overhead of mapTx to be 12 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
|
|
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 12 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(vTxHashes) + cachedInnerUsage;
|
|
}
|
|
|
|
void CTxMemPool::RemoveUnbroadcastTx(const uint256& txid, const bool unchecked) {
|
|
LOCK(cs);
|
|
|
|
if (m_unbroadcast_txids.erase(txid))
|
|
{
|
|
LogPrint(BCLog::MEMPOOL, "Removed %i from set of unbroadcast txns%s\n", txid.GetHex(), (unchecked ? " before confirmation that txn was sent out" : ""));
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason) {
|
|
AssertLockHeld(cs);
|
|
UpdateForRemoveFromMempool(stage, updateDescendants);
|
|
for (txiter it : stage) {
|
|
removeUnchecked(it, reason);
|
|
}
|
|
}
|
|
|
|
int CTxMemPool::Expire(std::chrono::seconds time)
|
|
{
|
|
AssertLockHeld(cs);
|
|
indexed_transaction_set::index<entry_time>::type::iterator it = mapTx.get<entry_time>().begin();
|
|
setEntries toremove;
|
|
while (it != mapTx.get<entry_time>().end() && it->GetTime() < time) {
|
|
// locked txes do not expire until mined and have sufficient confirmations
|
|
if (llmq::quorumInstantSendManager->IsLocked(it->GetTx().GetHash())) {
|
|
it++;
|
|
continue;
|
|
}
|
|
toremove.insert(mapTx.project<0>(it));
|
|
it++;
|
|
}
|
|
setEntries stage;
|
|
for (txiter removeit : toremove) {
|
|
CalculateDescendants(removeit, stage);
|
|
}
|
|
RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY);
|
|
return stage.size();
|
|
}
|
|
|
|
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry, bool validFeeEstimate)
|
|
{
|
|
setEntries setAncestors;
|
|
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
|
|
std::string dummy;
|
|
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy);
|
|
return addUnchecked(entry, setAncestors, validFeeEstimate);
|
|
}
|
|
|
|
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add)
|
|
{
|
|
AssertLockHeld(cs);
|
|
CTxMemPoolEntry::Children s;
|
|
if (add && entry->GetMemPoolChildren().insert(*child).second) {
|
|
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
|
|
} else if (!add && entry->GetMemPoolChildren().erase(*child)) {
|
|
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add)
|
|
{
|
|
AssertLockHeld(cs);
|
|
CTxMemPoolEntry::Parents s;
|
|
if (add && entry->GetMemPoolParents().insert(*parent).second) {
|
|
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
|
|
} else if (!add && entry->GetMemPoolParents().erase(*parent)) {
|
|
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
|
|
}
|
|
}
|
|
|
|
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
|
|
LOCK(cs);
|
|
if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0)
|
|
return CFeeRate(llround(rollingMinimumFeeRate));
|
|
|
|
int64_t time = GetTime();
|
|
if (time > lastRollingFeeUpdate + 10) {
|
|
double halflife = ROLLING_FEE_HALFLIFE;
|
|
if (DynamicMemoryUsage() < sizelimit / 4)
|
|
halflife /= 4;
|
|
else if (DynamicMemoryUsage() < sizelimit / 2)
|
|
halflife /= 2;
|
|
|
|
rollingMinimumFeeRate = rollingMinimumFeeRate / pow(2.0, (time - lastRollingFeeUpdate) / halflife);
|
|
lastRollingFeeUpdate = time;
|
|
|
|
if (rollingMinimumFeeRate < (double)incrementalRelayFee.GetFeePerK() / 2) {
|
|
rollingMinimumFeeRate = 0;
|
|
return CFeeRate(0);
|
|
}
|
|
}
|
|
return std::max(CFeeRate(llround(rollingMinimumFeeRate)), incrementalRelayFee);
|
|
}
|
|
|
|
void CTxMemPool::trackPackageRemoved(const CFeeRate& rate) {
|
|
AssertLockHeld(cs);
|
|
if (rate.GetFeePerK() > rollingMinimumFeeRate) {
|
|
rollingMinimumFeeRate = rate.GetFeePerK();
|
|
blockSinceLastRollingFeeBump = false;
|
|
}
|
|
}
|
|
|
|
void CTxMemPool::TrimToSize(size_t sizelimit, std::vector<COutPoint>* pvNoSpendsRemaining) {
|
|
AssertLockHeld(cs);
|
|
|
|
unsigned nTxnRemoved = 0;
|
|
CFeeRate maxFeeRateRemoved(0);
|
|
while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) {
|
|
indexed_transaction_set::index<descendant_score>::type::iterator it = mapTx.get<descendant_score>().begin();
|
|
|
|
// We set the new mempool min fee to the feerate of the removed set, plus the
|
|
// "minimum reasonable fee rate" (ie some value under which we consider txn
|
|
// to have 0 fee). This way, we don't allow txn to enter mempool with feerate
|
|
// equal to txn which were removed with no block in between.
|
|
CFeeRate removed(it->GetModFeesWithDescendants(), it->GetSizeWithDescendants());
|
|
removed += incrementalRelayFee;
|
|
trackPackageRemoved(removed);
|
|
maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed);
|
|
|
|
setEntries stage;
|
|
CalculateDescendants(mapTx.project<0>(it), stage);
|
|
nTxnRemoved += stage.size();
|
|
|
|
std::vector<CTransaction> txn;
|
|
if (pvNoSpendsRemaining) {
|
|
txn.reserve(stage.size());
|
|
for (txiter iter : stage)
|
|
txn.push_back(iter->GetTx());
|
|
}
|
|
RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT);
|
|
if (pvNoSpendsRemaining) {
|
|
for (const CTransaction& tx : txn) {
|
|
for (const CTxIn& txin : tx.vin) {
|
|
if (exists(txin.prevout.hash)) continue;
|
|
pvNoSpendsRemaining->push_back(txin.prevout);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (maxFeeRateRemoved > CFeeRate(0)) {
|
|
LogPrint(BCLog::MEMPOOL, "Removed %u txn, rolling minimum fee bumped to %s\n", nTxnRemoved, maxFeeRateRemoved.ToString());
|
|
}
|
|
}
|
|
|
|
uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const {
|
|
// find parent with highest descendant count
|
|
std::vector<txiter> candidates;
|
|
setEntries counted;
|
|
candidates.push_back(entry);
|
|
uint64_t maximum = 0;
|
|
while (candidates.size()) {
|
|
txiter candidate = candidates.back();
|
|
candidates.pop_back();
|
|
if (!counted.insert(candidate).second) continue;
|
|
const CTxMemPoolEntry::Parents& parents = candidate->GetMemPoolParentsConst();
|
|
if (parents.size() == 0) {
|
|
maximum = std::max(maximum, candidate->GetCountWithDescendants());
|
|
} else {
|
|
for (const CTxMemPoolEntry& i : parents) {
|
|
candidates.push_back(mapTx.iterator_to(i));
|
|
}
|
|
}
|
|
}
|
|
return maximum;
|
|
}
|
|
|
|
void CTxMemPool::GetTransactionAncestry(const uint256& txid, size_t& ancestors, size_t& descendants) const {
|
|
LOCK(cs);
|
|
auto it = mapTx.find(txid);
|
|
ancestors = descendants = 0;
|
|
if (it != mapTx.end()) {
|
|
ancestors = it->GetCountWithAncestors();
|
|
descendants = CalculateDescendantMaximum(it);
|
|
}
|
|
}
|
|
|
|
bool CTxMemPool::IsLoaded() const
|
|
{
|
|
LOCK(cs);
|
|
return m_is_loaded;
|
|
}
|
|
|
|
void CTxMemPool::SetIsLoaded(bool loaded)
|
|
{
|
|
LOCK(cs);
|
|
m_is_loaded = loaded;
|
|
}
|