dash/src/dbwrapper.h
MarcoFalke 4a3e3af6e7
Merge #20813: scripted-diff: Bump copyright headers
fa0074e2d82928016a43ca408717154a1c70a4db scripted-diff: Bump copyright headers (MarcoFalke)

Pull request description:

  Needs to be done because no one has removed the years yet

ACKs for top commit:
  practicalswift:
    ACK fa0074e2d82928016a43ca408717154a1c70a4db

Tree-SHA512: 210e92acd7d400b556cf8259c3ec9967797420cfd19f0c2a4fa54cb2b3d32ad9ae27e771269201e7d554c0f4cd73a8b1c1a42c9f65d8685ca4d52e5134b071a3
2024-04-10 03:19:34 +07:00

713 lines
21 KiB
C++

// Copyright (c) 2012-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_DBWRAPPER_H
#define BITCOIN_DBWRAPPER_H
#include <clientversion.h>
#include <fs.h>
#include <serialize.h>
#include <span.h>
#include <streams.h>
#include <util/strencodings.h>
#include <util/system.h>
#include <typeindex>
#include <leveldb/db.h>
#include <leveldb/write_batch.h>
static const size_t DBWRAPPER_PREALLOC_KEY_SIZE = 64;
static const size_t DBWRAPPER_PREALLOC_VALUE_SIZE = 1024;
class dbwrapper_error : public std::runtime_error
{
public:
explicit dbwrapper_error(const std::string& msg) : std::runtime_error(msg) {}
};
class CDBWrapper;
/** These should be considered an implementation detail of the specific database.
*/
namespace dbwrapper_private {
/** Handle database error by throwing dbwrapper_error exception.
*/
void HandleError(const leveldb::Status& status);
/** Work around circular dependency, as well as for testing in dbwrapper_tests.
* Database obfuscation should be considered an implementation detail of the
* specific database.
*/
const std::vector<unsigned char>& GetObfuscateKey(const CDBWrapper &w);
};
/** Batch of changes queued to be written to a CDBWrapper */
class CDBBatch
{
friend class CDBWrapper;
private:
const CDBWrapper &parent;
leveldb::WriteBatch batch;
CDataStream ssKey;
CDataStream ssValue;
size_t size_estimate;
public:
/**
* @param[in] parent CDBWrapper that this batch is to be submitted to
*/
explicit CDBBatch(const CDBWrapper &_parent) : parent(_parent), ssKey(SER_DISK, CLIENT_VERSION), ssValue(SER_DISK, CLIENT_VERSION), size_estimate(0) { };
void Clear()
{
batch.Clear();
size_estimate = 0;
}
template <typename K, typename V>
void Write(const K& key, const V& value)
{
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
Write(ssKey, value);
ssKey.clear();
}
template <typename V>
void Write(const CDataStream& _ssKey, const V& value)
{
leveldb::Slice slKey((const char*)_ssKey.data(), _ssKey.size());
ssValue.reserve(DBWRAPPER_PREALLOC_VALUE_SIZE);
ssValue << value;
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
leveldb::Slice slValue((const char*)ssValue.data(), ssValue.size());
batch.Put(slKey, slValue);
// - varint: key length (1 byte up to 127B, 2 bytes up to 16383B, ...)
// - byte[]: key
// - varint: value length
// - byte[]: value
// The formula below assumes the key and value are both less than 16k.
size_estimate += 3 + (slKey.size() > 127) + slKey.size() + (slValue.size() > 127) + slValue.size();
ssValue.clear();
}
template <typename K>
void Erase(const K& key)
{
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
Erase(ssKey);
ssKey.clear();
}
void Erase(const CDataStream& _ssKey) {
leveldb::Slice slKey((const char*)_ssKey.data(), _ssKey.size());
batch.Delete(slKey);
// - byte: header
// - varint: key length
// - byte[]: key
// The formula below assumes the key is less than 16kB.
size_estimate += 2 + (slKey.size() > 127) + slKey.size();
}
size_t SizeEstimate() const { return size_estimate; }
};
class CDBIterator
{
private:
const CDBWrapper &parent;
leveldb::Iterator *piter;
public:
/**
* @param[in] _parent Parent CDBWrapper instance.
* @param[in] _piter The original leveldb iterator.
*/
CDBIterator(const CDBWrapper &_parent, leveldb::Iterator *_piter) :
parent(_parent), piter(_piter) { };
~CDBIterator();
bool Valid() const;
void SeekToFirst();
template<typename K> void Seek(const K& key) {
CDataStream ssKey(SER_DISK, CLIENT_VERSION);
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
Seek(ssKey);
}
void Seek(const CDataStream& ssKey) {
leveldb::Slice slKey((const char*)ssKey.data(), ssKey.size());
piter->Seek(slKey);
}
void Next();
template<typename K> bool GetKey(K& key) {
try {
CDataStream ssKey = GetKey();
ssKey >> key;
} catch (const std::exception&) {
return false;
}
return true;
}
CDataStream GetKey() {
leveldb::Slice slKey = piter->key();
return CDataStream{MakeByteSpan(slKey), SER_DISK, CLIENT_VERSION};
}
unsigned int GetKeySize() {
return piter->key().size();
}
template<typename V> bool GetValue(V& value) {
leveldb::Slice slValue = piter->value();
try {
CDataStream ssValue{MakeByteSpan(slValue), SER_DISK, CLIENT_VERSION};
ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent));
ssValue >> value;
} catch (const std::exception&) {
return false;
}
return true;
}
unsigned int GetValueSize() {
return piter->value().size();
}
};
class CDBWrapper
{
friend const std::vector<unsigned char>& dbwrapper_private::GetObfuscateKey(const CDBWrapper &w);
private:
//! custom environment this database is using (may be nullptr in case of default environment)
leveldb::Env* penv;
//! database options used
leveldb::Options options;
//! options used when reading from the database
leveldb::ReadOptions readoptions;
//! options used when iterating over values of the database
leveldb::ReadOptions iteroptions;
//! options used when writing to the database
leveldb::WriteOptions writeoptions;
//! options used when sync writing to the database
leveldb::WriteOptions syncoptions;
//! the database itself
leveldb::DB* pdb;
//! the name of this database
std::string m_name;
//! a key used for optional XOR-obfuscation of the database
std::vector<unsigned char> obfuscate_key;
//! the key under which the obfuscation key is stored
static const std::string OBFUSCATE_KEY_KEY;
//! the length of the obfuscate key in number of bytes
static const unsigned int OBFUSCATE_KEY_NUM_BYTES;
std::vector<unsigned char> CreateObfuscateKey() const;
public:
/**
* @param[in] path Location in the filesystem where leveldb data will be stored.
* @param[in] nCacheSize Configures various leveldb cache settings.
* @param[in] fMemory If true, use leveldb's memory environment.
* @param[in] fWipe If true, remove all existing data.
* @param[in] obfuscate If true, store data obfuscated via simple XOR. If false, XOR
* with a zero'd byte array.
*/
CDBWrapper(const fs::path& path, size_t nCacheSize, bool fMemory = false, bool fWipe = false, bool obfuscate = false);
~CDBWrapper();
CDBWrapper(const CDBWrapper&) = delete;
CDBWrapper& operator=(const CDBWrapper&) = delete;
template <typename K>
bool ReadDataStream(const K& key, CDataStream& ssValue) const
{
CDataStream ssKey(SER_DISK, CLIENT_VERSION);
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
return ReadDataStream(ssKey, ssValue);
}
bool ReadDataStream(const CDataStream& ssKey, CDataStream& ssValue) const
{
leveldb::Slice slKey((const char*)ssKey.data(), ssKey.size());
std::string strValue;
leveldb::Status status = pdb->Get(readoptions, slKey, &strValue);
if (!status.ok()) {
if (status.IsNotFound())
return false;
LogPrintf("LevelDB read failure: %s\n", status.ToString());
dbwrapper_private::HandleError(status);
}
CDataStream ssValueTmp{MakeByteSpan(strValue), SER_DISK, CLIENT_VERSION};
ssValueTmp.Xor(obfuscate_key);
ssValue = std::move(ssValueTmp);
return true;
}
template <typename K, typename V>
bool Read(const K& key, V& value) const
{
CDataStream ssKey(SER_DISK, CLIENT_VERSION);
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
return Read(ssKey, value);
}
template <typename V>
bool Read(const CDataStream& ssKey, V& value) const
{
CDataStream ssValue(SER_DISK, CLIENT_VERSION);
if (!ReadDataStream(ssKey, ssValue)) {
return false;
}
try {
ssValue >> value;
} catch (const std::exception&) {
return false;
}
return true;
}
template <typename K, typename V>
bool Write(const K& key, const V& value, bool fSync = false)
{
CDBBatch batch(*this);
batch.Write(key, value);
return WriteBatch(batch, fSync);
}
template <typename K>
bool Exists(const K& key) const
{
CDataStream ssKey(SER_DISK, CLIENT_VERSION);
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
return Exists(ssKey);
}
bool Exists(const CDataStream& key) const
{
leveldb::Slice slKey((const char*)key.data(), key.size());
std::string strValue;
leveldb::Status status = pdb->Get(readoptions, slKey, &strValue);
if (!status.ok()) {
if (status.IsNotFound())
return false;
LogPrintf("LevelDB read failure: %s\n", status.ToString());
dbwrapper_private::HandleError(status);
}
return true;
}
template <typename K>
bool Erase(const K& key, bool fSync = false)
{
CDBBatch batch(*this);
batch.Erase(key);
return WriteBatch(batch, fSync);
}
bool WriteBatch(CDBBatch& batch, bool fSync = false);
// Get an estimate of LevelDB memory usage (in bytes).
size_t DynamicMemoryUsage() const;
CDBIterator *NewIterator()
{
return new CDBIterator(*this, pdb->NewIterator(iteroptions));
}
/**
* Return true if the database managed by this class contains no entries.
*/
bool IsEmpty();
template<typename K>
size_t EstimateSize(const K& key_begin, const K& key_end) const
{
CDataStream ssKey1(SER_DISK, CLIENT_VERSION), ssKey2(SER_DISK, CLIENT_VERSION);
ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey1 << key_begin;
ssKey2 << key_end;
leveldb::Slice slKey1((const char*)ssKey1.data(), ssKey1.size());
leveldb::Slice slKey2((const char*)ssKey2.data(), ssKey2.size());
uint64_t size = 0;
leveldb::Range range(slKey1, slKey2);
pdb->GetApproximateSizes(&range, 1, &size);
return size;
}
/**
* Compact a certain range of keys in the database.
*/
template<typename K>
void CompactRange(const K& key_begin, const K& key_end) const
{
CDataStream ssKey1(SER_DISK, CLIENT_VERSION), ssKey2(SER_DISK, CLIENT_VERSION);
ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey1 << key_begin;
ssKey2 << key_end;
leveldb::Slice slKey1((const char*)ssKey1.data(), ssKey1.size());
leveldb::Slice slKey2((const char*)ssKey2.data(), ssKey2.size());
pdb->CompactRange(&slKey1, &slKey2);
}
void CompactFull() const
{
pdb->CompactRange(nullptr, nullptr);
}
};
template<typename CDBTransaction>
class CDBTransactionIterator
{
private:
CDBTransaction& transaction;
typedef typename std::remove_pointer<decltype(transaction.parent.NewIterator())>::type ParentIterator;
// We maintain 2 iterators, one for the transaction and one for the parent
// At all times, only one of both provides the current value. The decision is made by comparing the current keys
// of both iterators, so that always the smaller key is the current one. On Next(), the previously chosen iterator
// is advanced.
typename CDBTransaction::WritesMap::iterator transactionIt;
std::unique_ptr<ParentIterator> parentIt;
CDataStream parentKey;
bool curIsParent{false};
public:
explicit CDBTransactionIterator(CDBTransaction& _transaction) :
transaction(_transaction),
parentKey(SER_DISK, CLIENT_VERSION)
{
transactionIt = transaction.writes.end();
parentIt = std::unique_ptr<ParentIterator>(transaction.parent.NewIterator());
}
void SeekToFirst() {
transactionIt = transaction.writes.begin();
parentIt->SeekToFirst();
SkipDeletedAndOverwritten();
DecideCur();
}
template<typename K>
void Seek(const K& key) {
Seek(CDBTransaction::KeyToDataStream(key));
}
void Seek(const CDataStream& ssKey) {
transactionIt = transaction.writes.lower_bound(ssKey);
parentIt->Seek(ssKey);
SkipDeletedAndOverwritten();
DecideCur();
}
bool Valid() {
return transactionIt != transaction.writes.end() || parentIt->Valid();
}
void Next() {
if (transactionIt == transaction.writes.end() && !parentIt->Valid()) {
return;
}
if (curIsParent) {
assert(parentIt->Valid());
parentIt->Next();
SkipDeletedAndOverwritten();
} else {
assert(transactionIt != transaction.writes.end());
++transactionIt;
}
DecideCur();
}
template<typename K>
bool GetKey(K& key) {
if (!Valid()) {
return false;
}
try {
// TODO try to avoid copy transactionIt->first (we need a stream that allows reading from external buffers)
(curIsParent ? parentKey : CDataStream{transactionIt->first}) >> key;
} catch (const std::exception&) {
return false;
}
return true;
}
CDataStream GetKey() {
if (!Valid()) {
return CDataStream(SER_DISK, CLIENT_VERSION);
}
if (curIsParent) {
return parentKey;
} else {
return transactionIt->first;
}
}
unsigned int GetKeySize() {
if (!Valid()) {
return 0;
}
if (curIsParent) {
return parentIt->GetKeySize();
} else {
return transactionIt->first.vKey.size();
}
}
template<typename V>
bool GetValue(V& value) {
if (!Valid()) {
return false;
}
if (curIsParent) {
return transaction.Read(parentKey, value);
} else {
return transaction.Read(transactionIt->first, value);
}
};
private:
void SkipDeletedAndOverwritten() {
while (parentIt->Valid()) {
parentKey = parentIt->GetKey();
if (!transaction.deletes.count(parentKey) && !transaction.writes.count(parentKey)) {
break;
}
parentIt->Next();
}
}
void DecideCur() {
if (transactionIt != transaction.writes.end() && !parentIt->Valid()) {
curIsParent = false;
} else if (transactionIt == transaction.writes.end() && parentIt->Valid()) {
curIsParent = true;
} else if (transactionIt != transaction.writes.end() && parentIt->Valid()) {
if (CDBTransaction::DataStreamCmp::less(transactionIt->first, parentKey)) {
curIsParent = false;
} else {
curIsParent = true;
}
}
}
};
template<typename Parent, typename CommitTarget>
class CDBTransaction {
friend class CDBTransactionIterator<CDBTransaction>;
protected:
Parent &parent;
CommitTarget &commitTarget;
ssize_t memoryUsage{0}; // signed, just in case we made an error in the calculations so that we don't get an overflow
struct DataStreamCmp {
static bool less(const CDataStream& a, const CDataStream& b) {
return std::lexicographical_compare(
(const uint8_t*)a.data(), (const uint8_t*)a.data() + a.size(),
(const uint8_t*)b.data(), (const uint8_t*)b.data() + b.size());
}
bool operator()(const CDataStream& a, const CDataStream& b) const {
return less(a, b);
}
};
struct ValueHolder {
size_t memoryUsage;
explicit ValueHolder(size_t _memoryUsage) : memoryUsage(_memoryUsage) {}
virtual ~ValueHolder() = default;
virtual void Write(const CDataStream& ssKey, CommitTarget &parent) = 0;
};
typedef std::unique_ptr<ValueHolder> ValueHolderPtr;
template <typename V>
struct ValueHolderImpl : ValueHolder {
ValueHolderImpl(const V &_value, size_t _memoryUsage) : ValueHolder(_memoryUsage), value(_value) {}
virtual void Write(const CDataStream& ssKey, CommitTarget &commitTarget) override {
// we're moving the value instead of copying it. This means that Write() can only be called once per
// ValueHolderImpl instance. Commit() clears the write maps, so this ok.
commitTarget.Write(ssKey, std::move(value));
}
V value;
};
template<typename K>
static CDataStream KeyToDataStream(const K& key) {
CDataStream ssKey(SER_DISK, CLIENT_VERSION);
ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE);
ssKey << key;
return ssKey;
}
typedef std::map<CDataStream, ValueHolderPtr, DataStreamCmp> WritesMap;
typedef std::set<CDataStream, DataStreamCmp> DeletesSet;
WritesMap writes;
DeletesSet deletes;
public:
CDBTransaction(Parent &_parent, CommitTarget &_commitTarget) : parent(_parent), commitTarget(_commitTarget) {}
template <typename K, typename V>
void Write(const K& key, const V& v) {
Write(KeyToDataStream(key), v);
}
template <typename V>
void Write(const CDataStream& ssKey, const V& v) {
auto valueMemoryUsage = ::GetSerializeSize(v, CLIENT_VERSION);
if (deletes.erase(ssKey)) {
memoryUsage -= ssKey.size();
}
auto it = writes.emplace(ssKey, nullptr).first;
if (it->second) {
memoryUsage -= ssKey.size() + it->second->memoryUsage;
}
it->second = std::make_unique<ValueHolderImpl<V>>(v, valueMemoryUsage);
memoryUsage += ssKey.size() + valueMemoryUsage;
}
template <typename K, typename V>
bool Read(const K& key, V& value) {
return Read(KeyToDataStream(key), value);
}
template <typename V>
bool Read(const CDataStream& ssKey, V& value) {
if (deletes.count(ssKey)) {
return false;
}
auto it = writes.find(ssKey);
if (it != writes.end()) {
auto *impl = dynamic_cast<ValueHolderImpl<V> *>(it->second.get());
if (!impl) {
throw std::runtime_error("Read called with V != previously written type");
}
value = impl->value;
return true;
}
return parent.Read(ssKey, value);
}
template <typename K>
bool Exists(const K& key) {
return Exists(KeyToDataStream(key));
}
bool Exists(const CDataStream& ssKey) {
if (deletes.count(ssKey)) {
return false;
}
if (writes.count(ssKey)) {
return true;
}
return parent.Exists(ssKey);
}
template <typename K>
void Erase(const K& key) {
return Erase(KeyToDataStream(key));
}
void Erase(const CDataStream& ssKey) {
auto it = writes.find(ssKey);
if (it != writes.end()) {
memoryUsage -= ssKey.size() + it->second->memoryUsage;
writes.erase(it);
}
if (deletes.emplace(ssKey).second) {
memoryUsage += ssKey.size();
}
}
void Clear() {
writes.clear();
deletes.clear();
memoryUsage = 0;
}
void Commit() {
for (const auto &k : deletes) {
commitTarget.Erase(k);
}
for (auto &p : writes) {
p.second->Write(p.first, commitTarget);
}
Clear();
}
bool IsClean() const {
return writes.empty() && deletes.empty();
}
size_t GetMemoryUsage() const {
if (memoryUsage < 0) {
// something went wrong when we accounted/calculated used memory...
static volatile bool didPrint = false;
if (!didPrint) {
LogPrintf("CDBTransaction::%s -- negative memoryUsage (%d)\n", __func__, memoryUsage);
didPrint = true;
}
return 0;
}
return (size_t)memoryUsage;
}
CDBTransactionIterator<CDBTransaction>* NewIterator() {
return new CDBTransactionIterator<CDBTransaction>(*this);
}
std::unique_ptr<CDBTransactionIterator<CDBTransaction>> NewIteratorUniquePtr() {
return std::make_unique<CDBTransactionIterator<CDBTransaction>>(*this);
}
};
#endif // BITCOIN_DBWRAPPER_H