mirror of
https://github.com/dashpay/dash.git
synced 2024-12-25 12:02:48 +01:00
f34889dcf4
d5800da5199527a366024bc80cad7fcca17d5c4a [test] Remove final references to mininode (John Newbery) 5e8df3312e47a73e747ee892face55ed9ababeea test: resort imports (John Newbery) 85165d4332b0f72d30e0c584b476249b542338e6 scripted-diff: Rename mininode to p2p (John Newbery) 9e2897d020b114a10c860f90c5405be029afddba scripted-diff: Rename mininode_lock to p2p_lock (John Newbery) Pull request description: New contributors are often confused by the terminology in the test framework, and what the difference between a _node_ and a _peer_ is. To summarize: - a 'node' is a bitcoind instance. This is the thing whose behavior is being tested. Each bitcoind node is managed by a python `TestNode` object which is used to start/stop the node, manage the node's data directory, read state about the node (eg process status, log file), and interact with the node over different interfaces. - one of the interfaces that we can use to interact with the node is the p2p interface. Each connection to a node using this interface is managed by a python `P2PInterface` or derived object (which is owned by the `TestNode` object). We can open zero, one or many p2p connections to each bitcoind node. The node sees these connections as 'peers'. For historic reasons, the word 'mininode' has been used to refer to those p2p interface objects that we use to connect to the bitcoind node (the code was originally taken from the 'mini-node' branch of https://github.com/jgarzik/pynode/tree/mini-node). However that name has proved to be confusing for new contributors, so rename the remaining references. ACKs for top commit: amitiuttarwar: ACK d5800da519 MarcoFalke: ACK d5800da5199527a366024bc80cad7fcca17d5c4a 🚞 Tree-SHA512: 2c46c2ac3c4278b6e3c647cfd8108428a41e80788fc4f0e386e5b0c47675bc687d94779496c09a3e5ea1319617295be10c422adeeff2d2bd68378e00e0eeb5de
169 lines
6.8 KiB
Python
Executable File
169 lines
6.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) 2015-2020 The Bitcoin Core developers
|
|
# Distributed under the MIT software license, see the accompanying
|
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
"""Test behavior of -maxuploadtarget.
|
|
|
|
* Verify that getdata requests for old blocks (>1week) are dropped
|
|
if uploadtarget has been reached.
|
|
* Verify that getdata requests for recent blocks are respected even
|
|
if uploadtarget has been reached.
|
|
* Verify that the upload counters are reset after 24 hours.
|
|
"""
|
|
from collections import defaultdict
|
|
|
|
from test_framework.messages import CInv, MAX_BLOCK_SIZE, MSG_BLOCK, msg_getdata
|
|
from test_framework.p2p import P2PInterface
|
|
from test_framework.test_framework import BitcoinTestFramework
|
|
from test_framework.util import assert_equal, mine_large_block, set_node_times
|
|
|
|
|
|
class TestP2PConn(P2PInterface):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.block_receive_map = defaultdict(int)
|
|
|
|
def on_inv(self, message):
|
|
pass
|
|
|
|
def on_block(self, message):
|
|
message.block.calc_sha256()
|
|
self.block_receive_map[message.block.sha256] += 1
|
|
|
|
class MaxUploadTest(BitcoinTestFramework):
|
|
|
|
def set_test_params(self):
|
|
self.setup_clean_chain = True
|
|
self.num_nodes = 1
|
|
self.extra_args = [["-maxuploadtarget=200", "-blockmaxsize=999000", "-maxtipage="+str(2*60*60*24*7), "-acceptnonstdtxn=1"]]
|
|
self.supports_cli = False
|
|
|
|
# Cache for utxos, as the listunspent may take a long time later in the test
|
|
self.utxo_cache = []
|
|
|
|
def skip_test_if_missing_module(self):
|
|
self.skip_if_no_wallet()
|
|
|
|
def run_test(self):
|
|
# Advance all nodes 2 weeks in the future
|
|
old_mocktime = self.mocktime
|
|
current_mocktime = old_mocktime + 2*60*60*24*7
|
|
self.mocktime = current_mocktime
|
|
set_node_times(self.nodes, current_mocktime)
|
|
|
|
# Before we connect anything, we first set the time on the node
|
|
# to be in the past, otherwise things break because the CNode
|
|
# time counters can't be reset backward after initialization
|
|
self.nodes[0].setmocktime(old_mocktime)
|
|
|
|
# Generate some old blocks
|
|
self.nodes[0].generate(130)
|
|
|
|
# p2p_conns[0] will only request old blocks
|
|
# p2p_conns[1] will only request new blocks
|
|
# p2p_conns[2] will test resetting the counters
|
|
p2p_conns = []
|
|
|
|
for _ in range(3):
|
|
p2p_conns.append(self.nodes[0].add_p2p_connection(TestP2PConn()))
|
|
|
|
# Now mine a big block
|
|
mine_large_block(self.nodes[0], self.utxo_cache)
|
|
|
|
# Store the hash; we'll request this later
|
|
big_old_block = self.nodes[0].getbestblockhash()
|
|
old_block_size = self.nodes[0].getblock(big_old_block, True)['size']
|
|
big_old_block = int(big_old_block, 16)
|
|
|
|
# Advance to two days ago
|
|
self.nodes[0].setmocktime(current_mocktime - 2*60*60*24)
|
|
|
|
# Mine one more block, so that the prior block looks old
|
|
mine_large_block(self.nodes[0], self.utxo_cache)
|
|
|
|
# We'll be requesting this new block too
|
|
big_new_block = self.nodes[0].getbestblockhash()
|
|
big_new_block = int(big_new_block, 16)
|
|
|
|
# p2p_conns[0] will test what happens if we just keep requesting the
|
|
# the same big old block too many times (expect: disconnect)
|
|
|
|
getdata_request = msg_getdata()
|
|
getdata_request.inv.append(CInv(MSG_BLOCK, big_old_block))
|
|
|
|
max_bytes_per_day = 200*1024*1024
|
|
daily_buffer = 144 * MAX_BLOCK_SIZE
|
|
max_bytes_available = max_bytes_per_day - daily_buffer
|
|
success_count = max_bytes_available // old_block_size
|
|
|
|
# 144MB will be reserved for relaying new blocks, so expect this to
|
|
# succeed for ~70 tries.
|
|
for i in range(success_count):
|
|
p2p_conns[0].send_and_ping(getdata_request)
|
|
assert_equal(p2p_conns[0].block_receive_map[big_old_block], i+1)
|
|
|
|
assert_equal(len(self.nodes[0].getpeerinfo()), 3)
|
|
# At most a couple more tries should succeed (depending on how long
|
|
# the test has been running so far).
|
|
for _ in range(3):
|
|
p2p_conns[0].send_message(getdata_request)
|
|
p2p_conns[0].wait_for_disconnect()
|
|
assert_equal(len(self.nodes[0].getpeerinfo()), 2)
|
|
self.log.info("Peer 0 disconnected after downloading old block too many times")
|
|
|
|
# Requesting the current block on p2p_conns[1] should succeed indefinitely,
|
|
# even when over the max upload target.
|
|
# We'll try 200 times
|
|
getdata_request.inv = [CInv(MSG_BLOCK, big_new_block)]
|
|
for i in range(200):
|
|
p2p_conns[1].send_and_ping(getdata_request)
|
|
p2p_conns[1].sync_with_ping()
|
|
assert_equal(p2p_conns[1].block_receive_map[big_new_block], i+1)
|
|
|
|
self.log.info("Peer 1 able to repeatedly download new block")
|
|
|
|
# But if p2p_conns[1] tries for an old block, it gets disconnected too.
|
|
getdata_request.inv = [CInv(MSG_BLOCK, big_old_block)]
|
|
p2p_conns[1].send_message(getdata_request)
|
|
p2p_conns[1].wait_for_disconnect()
|
|
assert_equal(len(self.nodes[0].getpeerinfo()), 1)
|
|
|
|
self.log.info("Peer 1 disconnected after trying to download old block")
|
|
|
|
self.log.info("Advancing system time on node to clear counters...")
|
|
|
|
# If we advance the time by 24 hours, then the counters should reset,
|
|
# and p2p_conns[2] should be able to retrieve the old block.
|
|
self.nodes[0].setmocktime(current_mocktime)
|
|
p2p_conns[2].sync_with_ping()
|
|
p2p_conns[2].send_and_ping(getdata_request)
|
|
assert_equal(p2p_conns[2].block_receive_map[big_old_block], 1)
|
|
|
|
self.log.info("Peer 2 able to download old block")
|
|
|
|
self.nodes[0].disconnect_p2ps()
|
|
|
|
self.log.info("Restarting node 0 with download permission and 1MB maxuploadtarget")
|
|
self.restart_node(0, ["-whitelist=download@127.0.0.1", "-maxuploadtarget=1", "-blockmaxsize=999000", "-maxtipage="+str(2*60*60*24*7), "-mocktime="+str(current_mocktime)])
|
|
|
|
# Reconnect to self.nodes[0]
|
|
self.nodes[0].add_p2p_connection(TestP2PConn())
|
|
|
|
#retrieve 20 blocks which should be enough to break the 1MB limit
|
|
getdata_request.inv = [CInv(MSG_BLOCK, big_new_block)]
|
|
for i in range(20):
|
|
self.nodes[0].p2p.send_and_ping(getdata_request)
|
|
assert_equal(self.nodes[0].p2p.block_receive_map[big_new_block], i+1)
|
|
|
|
getdata_request.inv = [CInv(MSG_BLOCK, big_old_block)]
|
|
self.nodes[0].p2p.send_and_ping(getdata_request)
|
|
|
|
self.log.info("Peer still connected after trying to download old block (download permission)")
|
|
peer_info = self.nodes[0].getpeerinfo()
|
|
assert_equal(len(peer_info), 1) # node is still connected
|
|
assert_equal(peer_info[0]['permissions'], ['download'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
MaxUploadTest().main()
|