dash/test/functional/p2p_getaddr_caching.py
Konstantin Akimov f34889dcf4
Merge #19760: test: Remove confusing mininode terminology
d5800da5199527a366024bc80cad7fcca17d5c4a [test] Remove final references to mininode (John Newbery)
5e8df3312e47a73e747ee892face55ed9ababeea test: resort imports (John Newbery)
85165d4332b0f72d30e0c584b476249b542338e6 scripted-diff: Rename mininode to p2p (John Newbery)
9e2897d020b114a10c860f90c5405be029afddba scripted-diff: Rename mininode_lock to p2p_lock (John Newbery)

Pull request description:

  New contributors are often confused by the terminology in the test framework, and what the difference between a _node_ and a _peer_ is. To summarize:

  - a 'node' is a bitcoind instance. This is the thing whose behavior is being tested. Each bitcoind node is managed by a python `TestNode` object which is used to start/stop the node, manage the node's data directory, read state about the node (eg process status, log file), and interact with the node over different interfaces.
  - one of the interfaces that we can use to interact with the node is the p2p interface. Each connection to a node using this interface is managed by a python `P2PInterface` or derived object (which is owned by the `TestNode` object). We can open zero, one or many p2p connections to each bitcoind node. The node sees these connections as 'peers'.

  For historic reasons, the word 'mininode' has been used to refer to those p2p interface objects that we use to connect to the bitcoind node (the code was originally taken from the 'mini-node' branch of https://github.com/jgarzik/pynode/tree/mini-node). However that name has proved to be confusing for new contributors, so rename the remaining references.

ACKs for top commit:
  amitiuttarwar:
    ACK d5800da519
  MarcoFalke:
    ACK d5800da5199527a366024bc80cad7fcca17d5c4a 🚞
Tree-SHA512: 2c46c2ac3c4278b6e3c647cfd8108428a41e80788fc4f0e386e5b0c47675bc687d94779496c09a3e5ea1319617295be10c422adeeff2d2bd68378e00e0eeb5de
2024-01-20 00:07:10 +07:00

128 lines
5.6 KiB
Python
Executable File

#!/usr/bin/env python3
# Copyright (c) 2020 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test addr response caching"""
from test_framework.messages import msg_getaddr
from test_framework.p2p import (
P2PInterface,
p2p_lock
)
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import (
assert_equal,
PORT_MIN,
PORT_RANGE,
)
# As defined in net_processing.
MAX_ADDR_TO_SEND = 1000
MAX_PCT_ADDR_TO_SEND = 23
class AddrReceiver(P2PInterface):
def __init__(self):
super().__init__()
self.received_addrs = None
def get_received_addrs(self):
with p2p_lock:
return self.received_addrs
def on_addr(self, message):
self.received_addrs = []
for addr in message.addrs:
self.received_addrs.append(addr.ip)
def addr_received(self):
return self.received_addrs is not None
class AddrTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 1
# Start onion ports after p2p and rpc ports.
port = PORT_MIN + 2 * PORT_RANGE
self.onion_port1 = port
self.onion_port2 = port + 1
self.extra_args = [
[f"-bind=127.0.0.1:{self.onion_port1}=onion", f"-bind=127.0.0.1:{self.onion_port2}=onion"],
]
def run_test(self):
self.log.info('Fill peer AddrMan with a lot of records')
for i in range(10000):
first_octet = i >> 8
second_octet = i % 256
a = "{}.{}.1.1".format(first_octet, second_octet)
self.nodes[0].addpeeraddress(a, 9999)
# Need to make sure we hit MAX_ADDR_TO_SEND records in the addr response later because
# only a fraction of all known addresses can be cached and returned.
assert(len(self.nodes[0].getnodeaddresses(0)) > int(MAX_ADDR_TO_SEND / (MAX_PCT_ADDR_TO_SEND / 100)))
last_response_on_local_bind = None
last_response_on_onion_bind1 = None
last_response_on_onion_bind2 = None
self.log.info('Send many addr requests within short time to receive same response')
N = 5
cur_mock_time = self.mocktime
for i in range(N):
addr_receiver_local = self.nodes[0].add_p2p_connection(AddrReceiver())
addr_receiver_local.send_and_ping(msg_getaddr())
addr_receiver_onion1 = self.nodes[0].add_p2p_connection(AddrReceiver(), dstport=self.onion_port1)
addr_receiver_onion1.send_and_ping(msg_getaddr())
addr_receiver_onion2 = self.nodes[0].add_p2p_connection(AddrReceiver(), dstport=self.onion_port2)
addr_receiver_onion2.send_and_ping(msg_getaddr())
# Trigger response
cur_mock_time += 5 * 60
self.nodes[0].setmocktime(cur_mock_time)
addr_receiver_local.wait_until(addr_receiver_local.addr_received)
addr_receiver_onion1.wait_until(addr_receiver_onion1.addr_received)
addr_receiver_onion2.wait_until(addr_receiver_onion2.addr_received)
if i > 0:
# Responses from different binds should be unique
assert(last_response_on_local_bind != addr_receiver_onion1.get_received_addrs())
assert(last_response_on_local_bind != addr_receiver_onion2.get_received_addrs())
assert(last_response_on_onion_bind1 != addr_receiver_onion2.get_received_addrs())
# Responses on from the same bind should be the same
assert_equal(last_response_on_local_bind, addr_receiver_local.get_received_addrs())
assert_equal(last_response_on_onion_bind1, addr_receiver_onion1.get_received_addrs())
assert_equal(last_response_on_onion_bind2, addr_receiver_onion2.get_received_addrs())
last_response_on_local_bind = addr_receiver_local.get_received_addrs()
last_response_on_onion_bind1 = addr_receiver_onion1.get_received_addrs()
last_response_on_onion_bind2 = addr_receiver_onion2.get_received_addrs()
for response in [last_response_on_local_bind, last_response_on_onion_bind1, last_response_on_onion_bind2]:
assert_equal(len(response), MAX_ADDR_TO_SEND)
cur_mock_time += 3 * 24 * 60 * 60
self.nodes[0].setmocktime(cur_mock_time)
self.log.info('After time passed, see a new response to addr request')
addr_receiver_local = self.nodes[0].add_p2p_connection(AddrReceiver())
addr_receiver_local.send_and_ping(msg_getaddr())
addr_receiver_onion1 = self.nodes[0].add_p2p_connection(AddrReceiver(), dstport=self.onion_port1)
addr_receiver_onion1.send_and_ping(msg_getaddr())
addr_receiver_onion2 = self.nodes[0].add_p2p_connection(AddrReceiver(), dstport=self.onion_port2)
addr_receiver_onion2.send_and_ping(msg_getaddr())
# Trigger response
cur_mock_time += 5 * 60
self.nodes[0].setmocktime(cur_mock_time)
addr_receiver_local.wait_until(addr_receiver_local.addr_received)
addr_receiver_onion1.wait_until(addr_receiver_onion1.addr_received)
addr_receiver_onion2.wait_until(addr_receiver_onion2.addr_received)
# new response is different
assert(set(last_response_on_local_bind) != set(addr_receiver_local.get_received_addrs()))
assert(set(last_response_on_onion_bind1) != set(addr_receiver_onion1.get_received_addrs()))
assert(set(last_response_on_onion_bind2) != set(addr_receiver_onion2.get_received_addrs()))
if __name__ == '__main__':
AddrTest().main()