mirror of
https://github.com/dashpay/dash.git
synced 2024-12-29 13:59:06 +01:00
92409675e6
1fedf470cd
test: add type annotation for `ADDRS` in `p2p_addrv2_relay` (Kittywhiskers Van Gogh)022b76f20b
merge bitcoin#23218: Use mocktime for ping timeout (Kittywhiskers Van Gogh)45d9e58023
merge bitcoin#22960: Set peertimeout in write_config (Kittywhiskers Van Gogh)06e909b737
merge bitcoin#22604: address rate-limiting follow-ups (Kittywhiskers Van Gogh)60b3e08ed1
merge bitcoin#22616: address relay fixups (Kittywhiskers Van Gogh)8b8fbc5226
merge bitcoin#22618: Small follow-ups to 21528 (Kittywhiskers Van Gogh)18fe765988
merge bitcoin#21528: Reduce addr blackholes (Kittywhiskers Van Gogh)c1874c6615
net_processing: gate `m_tx_relay` access behind `!IsBlockOnlyConn()` (Kittywhiskers Van Gogh)602d13d2a2
merge bitcoin#22387: Rate limit the processing of rumoured addresses (Kittywhiskers Van Gogh)fe66202c05
merge bitcoin#22211: relay I2P addresses even if not reachable (by us) (Kittywhiskers Van Gogh)7e08db55fe
merge bitcoin#22306: Improvements to p2p_addr_relay.py (Kittywhiskers Van Gogh)ff3497c18b
merge bitcoin#21843: enable GetAddr, GetAddresses, and getnodeaddresses by network (Kittywhiskers Van Gogh)51edeb082c
merge bitcoin#21594: add network field to getnodeaddresses (Kittywhiskers Van Gogh) Pull request description: ## Additional Information * Dependency for https://github.com/dashpay/dash/pull/5982 * Population of `ADDRS` in `p2p_addr`(`v2`)`_relay` in Dash is done in the test object ([source](0a62b9f985/test/functional/p2p_addrv2_relay.py (L42-L49)
)) as opposed to upstream, where it is done in the global state ([source](d930c7f5b0/test/functional/p2p_addrv2_relay.py (L23-L35)
)). This is because Dash specifically relies on `self.mocktime` instead of Bitcoin, which will work with simply sampling current time (`time.time()`). * [bitcoin#22211](https://github.com/bitcoin/bitcoin/pull/22211) adds changes ([source](https://github.com/bitcoin/bitcoin/pull/22211/files#diff-d3d7b1bb23f25a96c9c7444a79159ad1799895565f99efebf1618e41e886bd53R44-R46)) that add usage of `ADDRS` outside the test object. That, alongside with other considerations, resulted in [dash#5967](https://github.com/dashpay/dash/pull/5967) and a discussion ([source](https://github.com/dashpay/dash/pull/5967/files#r1548101561)) * Eventually, following the footsteps of [dash#5967](https://github.com/dashpay/dash/pull/5967), `ADDRS` was defined outside but setup within the test object. This worked just fine ([build](https://gitlab.com/dashpay/dash/-/jobs/6594036014)) but displeased the linter ([build](https://gitlab.com/dashpay/dash/-/jobs/6594035886)) because `ADDRS` type could not be implicitly determined solely on usage in the global scope. * An attempt to correct this was done by realignment with upstream ([commit](262d00682c
)), which pleased the linter ([build](https://gitlab.com/dashpay/dash/-/jobs/6597322521)) but broken the test ([build](https://gitlab.com/dashpay/dash/-/jobs/6597322548)) for the reasons as mentioned above. * Therefore, to keep the linter happy, `ADDRS` has been annotated as a `List[CAddress]` (which involved importing `List` but that's fine) ([commit](cb6d36df7d
)) * Working on [bitcoin#21528](https://github.com/bitcoin/bitcoin/pull/21528) proved challenging due to differences in Dash's and Bitcoin's approach to relaying and the workarounds used to accommodate for that. * Bitcoin conditionally initializes `m_tx_relay` ([source](3f7250b328/src/net.cpp (L2989-L2991)
)) and can always check if transaction relaying is permitted by checking if it's initialized ([source](3f7250b328/src/net_processing.cpp (L1820-L1826)
)). * Dash unconditionally initializes it ([source](0a62b9f985/src/net.h (L605-L607)
)). Earlier, Dash used to check if it's _appropriate_ to relay transactions by checking if it can relay addresses ([source](dc6f52ac99/src/net_processing.cpp (L2134-L2140)
)), which at the time, simply meant, it wasn't a block-only connection ([source](dc6f52ac99/src/net.h (L568-L572)
)). * This mutual exclusivity no longer held true in [dash#5964](https://github.com/dashpay/dash/pull/5964) and therefore, some transaction relay decisions were bound to **not** being a block-only connection ([commit](26c39f5b92
)) but some were left behind, adopting `RelayAddrsWithPeer()` ([source](0a62b9f985/src/net_processing.cpp (L2215-L2221)
)), which, to be noted, is determined by the initialization status of `Peer::m_addr_known` ([source](0a62b9f985/src/net_processing.cpp (L839-L842)
)), which, so far, was pegged to **not** block-relay connection status ([source](0a62b9f985/src/net_processing.cpp (L1319)
)). * [bitcoin#21528](https://github.com/bitcoin/bitcoin/pull/21528) got rid of `RelayAddrsWithPeer()` and replaced it with `Peer::m_addr_relay_enabled` ([source](3f7250b328/src/net_processing.cpp (L237-L251)
)), which is setup using `Peer::SetupAddressRelay()` ([source](3f7250b328/src/net_processing.cpp (L637-L643)
)). This means, rather than defining the address relay status during construction, it is setup during the first address-related message (i.e. `ADDR`, `ADDRV2`, `GETADDR`) ([source](3f7250b328/src/net_processing.cpp (L227-L236)
)). * Meaning, until the first addr-related message happens, the state is has not been determined and defaults to `false`. Because some `m_tx_relay` usage still piggybacked on addr-relay permission to determine tx-relay, if a transaction message is processed before an address message is processed, there will be a false-negative condition. The transaction relay logic won't run since it's expecting that if transactions can be relayed, so can addresses and checks for address relaying but believes that it cannot do address relaying, borrowing that state for transaction relaying, despite address relaying permissions actually being indeterminate since it hasn't had a chance to validate its eligibility. * There were two approaches, run `SetupAddressRelay()` as early in the connection as possible to substitute for the "determine at construction" behaviour and change no other conditional statements... and break address-related tests _or_ move the remaining conditional transaction relay logic to use **not** block-only connection checks instead. * We've gone with the latter, resulting in some changes where the condition only changes form but is the same (`RelayAddrsWithPeer()` > `Peer::m_addr_relay_enabled`) ([source](109c5a9383 (diff-6875de769e90cec84d2e8a9c1b962cdbcda44d870d42e4215827e599e11e90e3L2131-L2134)
)) but other changes where the condition itself has been changed (`RelayAddrsWithPeer()` > `!CNode::IsBlockOnlyConn()`) ([source](109c5a9383 (diff-6875de769e90cec84d2e8a9c1b962cdbcda44d870d42e4215827e599e11e90e3R2256-R2259)
)) * This does mean that in [dash#5982](https://github.com/dashpay/dash/pull/5982), `Peer::m_block_relay_only` is introduced to be the counterpart to `Peer::m_addr_relay_enabled` ([source](45b48dae0a/src/net_processing.cpp (L321-L322)
)) to account for some `CConnman` logic being moved into `PeerManager` ([source](45b48dae0a/src/net_processing.cpp (L2186-L2195)
)), which, in a way, reverts [dash#5339](https://github.com/dashpay/dash/pull/5339) but also, doesn't, since it moves the information into `Peer` instead of reinstating it into `CNode`. * This was eventual since the underlying presumption that `CNode::IsAddrRelayPeer() == !CNode::IsBlockOnlyConn()` no longer holds true (also because `CNode::IsAddrRelayPeer()` doesn't exist anymore). Special thanks to @UdjinM6 for help with understanding Dash-specifics with respect to functional tests through help on [dash#5964](https://github.com/dashpay/dash/pull/5964) and [dash#5967](https://github.com/dashpay/dash/pull/5967) ## Breaking Changes None expected. RPC changes have been introduced in `getnodeaddresses`, where a new input `network`, can filter addresses based on desired network and a new output, also `network`, will associate the address with the origin network. This change is expected to be backwards-compatible. ## Checklist: - [x] I have performed a self-review of my own code - [x] I have commented my code, particularly in hard-to-understand areas - [x] I have added or updated relevant unit/integration/functional/e2e tests - [x] I have made corresponding changes to the documentation - [x] I have assigned this pull request to a milestone _(for repository code-owners and collaborators only)_ ACKs for top commit: PastaPastaPasta: utACK1fedf470cd
Tree-SHA512: 533d33f79a0d9fd730073b3b9a58baf1dd3b0c95823e765c88a43cc974970ed3609bf1863c63ac7fc5586d1437e5250b0a2d3005468da09e407110a412bd0264
843 lines
32 KiB
Python
Executable File
843 lines
32 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (c) 2010 ArtForz -- public domain half-a-node
|
|
# Copyright (c) 2012 Jeff Garzik
|
|
# Copyright (c) 2010-2020 The Bitcoin Core developers
|
|
# Distributed under the MIT software license, see the accompanying
|
|
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
"""Test objects for interacting with a dashd node over the p2p protocol.
|
|
|
|
The P2PInterface objects interact with the dashd nodes under test using the
|
|
node's p2p interface. They can be used to send messages to the node, and
|
|
callbacks can be registered that execute when messages are received from the
|
|
node. Messages are sent to/received from the node on an asyncio event loop.
|
|
State held inside the objects must be guarded by the p2p_lock to avoid data
|
|
races between the main testing thread and the event loop.
|
|
|
|
P2PConnection: A low-level connection object to a node's P2P interface
|
|
P2PInterface: A high-level interface object for communicating to a node over P2P
|
|
P2PDataStore: A p2p interface class that keeps a store of transactions and blocks
|
|
and can respond correctly to getdata and getheaders messages
|
|
P2PTxInvStore: A p2p interface class that inherits from P2PDataStore, and keeps
|
|
a count of how many times each txid has been announced.
|
|
"""
|
|
import asyncio
|
|
from collections import defaultdict
|
|
from io import BytesIO
|
|
import logging
|
|
import struct
|
|
import sys
|
|
import threading
|
|
|
|
from test_framework.messages import (
|
|
CBlockHeader,
|
|
CompressibleBlockHeader,
|
|
MAX_HEADERS_RESULTS,
|
|
MIN_VERSION_SUPPORTED,
|
|
NODE_HEADERS_COMPRESSED,
|
|
msg_addr,
|
|
msg_addrv2,
|
|
msg_block,
|
|
msg_blocktxn,
|
|
msg_cfcheckpt,
|
|
msg_cfheaders,
|
|
msg_cfilter,
|
|
msg_clsig,
|
|
msg_cmpctblock,
|
|
msg_filteradd,
|
|
msg_filterclear,
|
|
msg_filterload,
|
|
msg_getaddr,
|
|
msg_getblocks,
|
|
msg_getblocktxn,
|
|
msg_getcfcheckpt,
|
|
msg_getcfheaders,
|
|
msg_getcfilters,
|
|
msg_getdata,
|
|
msg_getheaders,
|
|
msg_getheaders2,
|
|
msg_getmnlistd,
|
|
msg_headers,
|
|
msg_headers2,
|
|
msg_inv,
|
|
msg_isdlock,
|
|
msg_mempool,
|
|
msg_mnlistdiff,
|
|
msg_merkleblock,
|
|
msg_notfound,
|
|
msg_ping,
|
|
msg_pong,
|
|
msg_qdata,
|
|
msg_qgetdata,
|
|
msg_sendaddrv2,
|
|
msg_sendcmpct,
|
|
msg_sendheaders,
|
|
msg_sendheaders2,
|
|
msg_tx,
|
|
msg_verack,
|
|
msg_version,
|
|
MY_SUBVERSION,
|
|
MSG_BLOCK,
|
|
MSG_TX,
|
|
MSG_TYPE_MASK,
|
|
NODE_NETWORK,
|
|
sha256,
|
|
)
|
|
from test_framework.util import (
|
|
MAX_NODES,
|
|
p2p_port,
|
|
wait_until_helper,
|
|
)
|
|
|
|
logger = logging.getLogger("TestFramework.p2p")
|
|
|
|
MESSAGEMAP = {
|
|
b"addr": msg_addr,
|
|
b"addrv2": msg_addrv2,
|
|
b"block": msg_block,
|
|
b"blocktxn": msg_blocktxn,
|
|
b"cfcheckpt": msg_cfcheckpt,
|
|
b"cfheaders": msg_cfheaders,
|
|
b"cfilter": msg_cfilter,
|
|
b"cmpctblock": msg_cmpctblock,
|
|
b"filteradd": msg_filteradd,
|
|
b"filterclear": msg_filterclear,
|
|
b"filterload": msg_filterload,
|
|
b"getaddr": msg_getaddr,
|
|
b"getblocks": msg_getblocks,
|
|
b"getblocktxn": msg_getblocktxn,
|
|
b"getcfcheckpt": msg_getcfcheckpt,
|
|
b"getcfheaders": msg_getcfheaders,
|
|
b"getcfilters": msg_getcfilters,
|
|
b"getdata": msg_getdata,
|
|
b"getheaders": msg_getheaders,
|
|
b"getheaders2": msg_getheaders2,
|
|
b"headers": msg_headers,
|
|
b"headers2": msg_headers2,
|
|
b"inv": msg_inv,
|
|
b"mempool": msg_mempool,
|
|
b"merkleblock": msg_merkleblock,
|
|
b"ping": msg_ping,
|
|
b"pong": msg_pong,
|
|
b"sendaddrv2": msg_sendaddrv2,
|
|
b"sendcmpct": msg_sendcmpct,
|
|
b"sendheaders": msg_sendheaders,
|
|
b"sendheaders2": msg_sendheaders2,
|
|
b"tx": msg_tx,
|
|
b"verack": msg_verack,
|
|
b"version": msg_version,
|
|
# Dash Specific
|
|
b"clsig": msg_clsig,
|
|
b"getmnlistd": msg_getmnlistd,
|
|
b"getsporks": None,
|
|
b"govsync": None,
|
|
b"isdlock": msg_isdlock,
|
|
b"mnlistdiff": msg_mnlistdiff,
|
|
b"notfound": msg_notfound,
|
|
b"qfcommit": None,
|
|
b"qsendrecsigs": None,
|
|
b"qgetdata": msg_qgetdata,
|
|
b"qdata": msg_qdata,
|
|
b"qwatch" : None,
|
|
b"senddsq": None,
|
|
b"spork": None,
|
|
}
|
|
|
|
MAGIC_BYTES = {
|
|
"mainnet": b"\xbf\x0c\x6b\xbd", # mainnet
|
|
"testnet3": b"\xce\xe2\xca\xff", # testnet3
|
|
"regtest": b"\xfc\xc1\xb7\xdc", # regtest
|
|
"devnet": b"\xe2\xca\xff\xce", # devnet
|
|
}
|
|
|
|
|
|
class P2PConnection(asyncio.Protocol):
|
|
"""A low-level connection object to a node's P2P interface.
|
|
|
|
This class is responsible for:
|
|
|
|
- opening and closing the TCP connection to the node
|
|
- reading bytes from and writing bytes to the socket
|
|
- deserializing and serializing the P2P message header
|
|
- logging messages as they are sent and received
|
|
|
|
This class contains no logic for handing the P2P message payloads. It must be
|
|
sub-classed and the on_message() callback overridden."""
|
|
|
|
def __init__(self):
|
|
# The underlying transport of the connection.
|
|
# Should only call methods on this from the NetworkThread, c.f. call_soon_threadsafe
|
|
self._transport = None
|
|
|
|
@property
|
|
def is_connected(self):
|
|
return self._transport is not None
|
|
|
|
def peer_connect_helper(self, dstaddr, dstport, net, timeout_factor, uacomment):
|
|
assert not self.is_connected
|
|
self.timeout_factor = timeout_factor
|
|
self.dstaddr = dstaddr
|
|
self.dstport = dstport
|
|
# The initial message to send after the connection was made:
|
|
self.on_connection_send_msg = None
|
|
self.recvbuf = b""
|
|
self.magic_bytes = MAGIC_BYTES[net]
|
|
self.uacomment = uacomment
|
|
|
|
if net == "devnet":
|
|
devnet_name = "devnet1" # see initialize_datadir()
|
|
if self.uacomment is None:
|
|
self.strSubVer = MY_SUBVERSION % ("(devnet.devnet-%s)" % devnet_name)
|
|
else:
|
|
self.strSubVer = MY_SUBVERSION % ("(devnet.devnet-%s,%s)" % (devnet_name, self.uacomment))
|
|
elif self.uacomment is not None:
|
|
self.strSubVer = MY_SUBVERSION % ("(%s)" % self.uacomment)
|
|
else:
|
|
self.strSubVer = MY_SUBVERSION % ""
|
|
|
|
def peer_connect(self, dstaddr, dstport, *, net, timeout_factor, uacomment=None):
|
|
self.peer_connect_helper(dstaddr, dstport, net, timeout_factor, uacomment)
|
|
|
|
loop = NetworkThread.network_event_loop
|
|
logger.debug('Connecting to Dash Node: %s:%d' % (self.dstaddr, self.dstport))
|
|
coroutine = loop.create_connection(lambda: self, host=self.dstaddr, port=self.dstport)
|
|
return lambda: loop.call_soon_threadsafe(loop.create_task, coroutine)
|
|
|
|
def peer_accept_connection(self, connect_id, connect_cb=lambda: None, *, net, timeout_factor, uacomment=None):
|
|
self.peer_connect_helper('0', 0, net, timeout_factor, uacomment)
|
|
|
|
logger.debug('Listening for Dash Node with id: {}'.format(connect_id))
|
|
return lambda: NetworkThread.listen(self, connect_cb, idx=connect_id)
|
|
|
|
def peer_disconnect(self):
|
|
# Connection could have already been closed by other end.
|
|
NetworkThread.network_event_loop.call_soon_threadsafe(lambda: self._transport and self._transport.abort())
|
|
|
|
# Connection and disconnection methods
|
|
|
|
def connection_made(self, transport):
|
|
"""asyncio callback when a connection is opened."""
|
|
assert not self._transport
|
|
logger.debug("Connected & Listening: %s:%d" % (self.dstaddr, self.dstport))
|
|
self._transport = transport
|
|
if self.on_connection_send_msg:
|
|
self.send_message(self.on_connection_send_msg)
|
|
self.on_connection_send_msg = None # Never used again
|
|
self.on_open()
|
|
|
|
def connection_lost(self, exc):
|
|
"""asyncio callback when a connection is closed."""
|
|
if exc:
|
|
logger.warning("Connection lost to {}:{} due to {}".format(self.dstaddr, self.dstport, exc))
|
|
else:
|
|
logger.debug("Closed connection to: %s:%d" % (self.dstaddr, self.dstport))
|
|
self._transport = None
|
|
self.recvbuf = b""
|
|
self.on_close()
|
|
|
|
# Socket read methods
|
|
|
|
def data_received(self, t):
|
|
"""asyncio callback when data is read from the socket."""
|
|
if len(t) > 0:
|
|
self.recvbuf += t
|
|
self._on_data()
|
|
|
|
def _on_data(self):
|
|
"""Try to read P2P messages from the recv buffer.
|
|
|
|
This method reads data from the buffer in a loop. It deserializes,
|
|
parses and verifies the P2P header, then passes the P2P payload to
|
|
the on_message callback for processing."""
|
|
try:
|
|
while True:
|
|
if len(self.recvbuf) < 4:
|
|
return
|
|
if self.recvbuf[:4] != self.magic_bytes:
|
|
raise ValueError("magic bytes mismatch: {} != {}".format(repr(self.magic_bytes), repr(self.recvbuf)))
|
|
if len(self.recvbuf) < 4 + 12 + 4 + 4:
|
|
return
|
|
msgtype = self.recvbuf[4:4+12].split(b"\x00", 1)[0]
|
|
msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0]
|
|
checksum = self.recvbuf[4+12+4:4+12+4+4]
|
|
if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen:
|
|
return
|
|
msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen]
|
|
th = sha256(msg)
|
|
h = sha256(th)
|
|
if checksum != h[:4]:
|
|
raise ValueError("got bad checksum " + repr(self.recvbuf))
|
|
self.recvbuf = self.recvbuf[4+12+4+4+msglen:]
|
|
if msgtype not in MESSAGEMAP:
|
|
raise ValueError("Received unknown msgtype from %s:%d: '%s' %s" % (self.dstaddr, self.dstport, msgtype, repr(msg)))
|
|
if MESSAGEMAP[msgtype] is None:
|
|
# Command is known but we don't want/need to handle it
|
|
continue
|
|
f = BytesIO(msg)
|
|
t = MESSAGEMAP[msgtype]()
|
|
t.deserialize(f)
|
|
self._log_message("receive", t)
|
|
self.on_message(t)
|
|
except Exception as e:
|
|
logger.exception('Error reading message:', repr(e))
|
|
raise
|
|
|
|
def on_message(self, message):
|
|
"""Callback for processing a P2P payload. Must be overridden by derived class."""
|
|
raise NotImplementedError
|
|
|
|
# Socket write methods
|
|
|
|
def send_message(self, message):
|
|
"""Send a P2P message over the socket.
|
|
|
|
This method takes a P2P payload, builds the P2P header and adds
|
|
the message to the send buffer to be sent over the socket."""
|
|
tmsg = self.build_message(message)
|
|
self._log_message("send", message)
|
|
return self.send_raw_message(tmsg)
|
|
|
|
def send_raw_message(self, raw_message_bytes):
|
|
if not self.is_connected:
|
|
raise IOError('Not connected')
|
|
|
|
def maybe_write():
|
|
if not self._transport:
|
|
return
|
|
if self._transport.is_closing():
|
|
return
|
|
self._transport.write(raw_message_bytes)
|
|
NetworkThread.network_event_loop.call_soon_threadsafe(maybe_write)
|
|
|
|
# Class utility methods
|
|
|
|
def build_message(self, message):
|
|
"""Build a serialized P2P message"""
|
|
msgtype = message.msgtype
|
|
data = message.serialize()
|
|
tmsg = self.magic_bytes
|
|
tmsg += msgtype
|
|
tmsg += b"\x00" * (12 - len(msgtype))
|
|
tmsg += struct.pack("<I", len(data))
|
|
th = sha256(data)
|
|
h = sha256(th)
|
|
tmsg += h[:4]
|
|
tmsg += data
|
|
return tmsg
|
|
|
|
def _log_message(self, direction, msg):
|
|
"""Logs a message being sent or received over the connection."""
|
|
if direction == "send":
|
|
log_message = "Send message to "
|
|
elif direction == "receive":
|
|
log_message = "Received message from "
|
|
log_message += "%s:%d: %s" % (self.dstaddr, self.dstport, repr(msg)[:500])
|
|
if len(log_message) > 500:
|
|
log_message += "... (msg truncated)"
|
|
logger.debug(log_message)
|
|
|
|
|
|
class P2PInterface(P2PConnection):
|
|
"""A high-level P2P interface class for communicating with a Dash node.
|
|
|
|
This class provides high-level callbacks for processing P2P message
|
|
payloads, as well as convenience methods for interacting with the
|
|
node over P2P.
|
|
|
|
Individual testcases should subclass this and override the on_* methods
|
|
if they want to alter message handling behaviour."""
|
|
def __init__(self, support_addrv2=False):
|
|
super().__init__()
|
|
|
|
# Track number of messages of each type received.
|
|
# Should be read-only in a test.
|
|
self.message_count = defaultdict(int)
|
|
|
|
# Track the most recent message of each type.
|
|
# To wait for a message to be received, pop that message from
|
|
# this and use self.wait_until.
|
|
self.last_message = {}
|
|
|
|
# A count of the number of ping messages we've sent to the node
|
|
self.ping_counter = 1
|
|
|
|
# The network services received from the peer
|
|
self.nServices = 0
|
|
|
|
self.support_addrv2 = support_addrv2
|
|
|
|
def peer_connect_send_version(self, services):
|
|
# Send a version msg
|
|
vt = msg_version()
|
|
vt.nServices = services
|
|
vt.addrTo.ip = self.dstaddr
|
|
vt.addrTo.port = self.dstport
|
|
vt.addrFrom.ip = "0.0.0.0"
|
|
vt.addrFrom.port = 0
|
|
vt.strSubVer = self.strSubVer
|
|
self.on_connection_send_msg = vt # Will be sent soon after connection_made
|
|
|
|
def peer_connect(self, *args, services=NODE_NETWORK | NODE_HEADERS_COMPRESSED, send_version=True, **kwargs):
|
|
create_conn = super().peer_connect(*args, **kwargs)
|
|
|
|
if send_version:
|
|
self.peer_connect_send_version(services)
|
|
|
|
return create_conn
|
|
|
|
def peer_accept_connection(self, *args, services=NODE_NETWORK | NODE_HEADERS_COMPRESSED, **kwargs):
|
|
create_conn = super().peer_accept_connection(*args, **kwargs)
|
|
self.peer_connect_send_version(services)
|
|
|
|
return create_conn
|
|
|
|
# Message receiving methods
|
|
|
|
def on_message(self, message):
|
|
"""Receive message and dispatch message to appropriate callback.
|
|
|
|
We keep a count of how many of each message type has been received
|
|
and the most recent message of each type."""
|
|
with p2p_lock:
|
|
try:
|
|
msgtype = message.msgtype.decode('ascii')
|
|
self.message_count[msgtype] += 1
|
|
self.last_message[msgtype] = message
|
|
getattr(self, 'on_' + msgtype)(message)
|
|
except:
|
|
print("ERROR delivering %s (%s)" % (repr(message), sys.exc_info()[0]))
|
|
raise
|
|
|
|
# Callback methods. Can be overridden by subclasses in individual test
|
|
# cases to provide custom message handling behaviour.
|
|
|
|
def on_open(self):
|
|
pass
|
|
|
|
def on_close(self):
|
|
pass
|
|
|
|
def on_addr(self, message): pass
|
|
def on_addrv2(self, message): pass
|
|
def on_block(self, message): pass
|
|
def on_blocktxn(self, message): pass
|
|
def on_cfcheckpt(self, message): pass
|
|
def on_cfheaders(self, message): pass
|
|
def on_cfilter(self, message): pass
|
|
def on_cmpctblock(self, message): pass
|
|
def on_feefilter(self, message): pass
|
|
def on_filteradd(self, message): pass
|
|
def on_filterclear(self, message): pass
|
|
def on_filterload(self, message): pass
|
|
def on_getaddr(self, message): pass
|
|
def on_getblocks(self, message): pass
|
|
def on_getblocktxn(self, message): pass
|
|
def on_getdata(self, message): pass
|
|
def on_getheaders(self, message): pass
|
|
def on_getheaders2(self, message): pass
|
|
def on_headers(self, message): pass
|
|
def on_headers2(self, message): pass
|
|
def on_mempool(self, message): pass
|
|
def on_merkleblock(self, message): pass
|
|
def on_notfound(self, message): pass
|
|
def on_pong(self, message): pass
|
|
def on_sendaddrv2(self, message): pass
|
|
def on_sendcmpct(self, message): pass
|
|
def on_sendheaders(self, message): pass
|
|
def on_sendheaders2(self, message): pass
|
|
def on_tx(self, message): pass
|
|
|
|
def on_inv(self, message):
|
|
want = msg_getdata()
|
|
for i in message.inv:
|
|
if i.type != 0:
|
|
want.inv.append(i)
|
|
if len(want.inv):
|
|
self.send_message(want)
|
|
|
|
def on_ping(self, message):
|
|
self.send_message(msg_pong(message.nonce))
|
|
|
|
def on_mnlistdiff(self, message): pass
|
|
def on_clsig(self, message): pass
|
|
def on_islock(self, message): pass
|
|
def on_isdlock(self, message): pass
|
|
|
|
def on_qgetdata(self, message): pass
|
|
def on_qdata(self, message): pass
|
|
def on_qwatch(self, message): pass
|
|
|
|
def on_verack(self, message): pass
|
|
|
|
def on_version(self, message):
|
|
assert message.nVersion >= MIN_VERSION_SUPPORTED, "Version {} received. Test framework only supports versions greater than {}".format(message.nVersion, MIN_VERSION_SUPPORTED)
|
|
if self.support_addrv2:
|
|
self.send_message(msg_sendaddrv2())
|
|
self.send_message(msg_verack())
|
|
self.nServices = message.nServices
|
|
self.send_message(msg_getaddr())
|
|
|
|
# Connection helper methods
|
|
|
|
def wait_until(self, test_function_in, *, timeout=60, check_connected=True):
|
|
def test_function():
|
|
if check_connected:
|
|
assert self.is_connected
|
|
return test_function_in()
|
|
|
|
wait_until_helper(test_function, timeout=timeout, lock=p2p_lock, timeout_factor=self.timeout_factor)
|
|
|
|
def wait_for_connect(self, timeout=60):
|
|
test_function = lambda: self.is_connected
|
|
wait_until_helper(test_function, timeout=timeout, lock=p2p_lock)
|
|
|
|
def wait_for_disconnect(self, timeout=60):
|
|
test_function = lambda: not self.is_connected
|
|
self.wait_until(test_function, timeout=timeout, check_connected=False)
|
|
|
|
# Message receiving helper methods
|
|
|
|
def wait_for_tx(self, txid, timeout=60):
|
|
def test_function():
|
|
if not self.last_message.get('tx'):
|
|
return False
|
|
return self.last_message['tx'].tx.rehash() == txid
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
def wait_for_block(self, blockhash, timeout=60):
|
|
def test_function():
|
|
return self.last_message.get("block") and self.last_message["block"].block.rehash() == blockhash
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
def wait_for_header(self, blockhash, timeout=60):
|
|
def test_function():
|
|
last_headers = self.last_message.get('headers')
|
|
if not last_headers:
|
|
return False
|
|
return last_headers.headers[0].rehash() == int(blockhash, 16)
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
def wait_for_merkleblock(self, blockhash, timeout=60):
|
|
def test_function():
|
|
last_filtered_block = self.last_message.get('merkleblock')
|
|
if not last_filtered_block:
|
|
return False
|
|
return last_filtered_block.merkleblock.header.rehash() == int(blockhash, 16)
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
|
|
def wait_for_getdata(self, hash_list, timeout=60):
|
|
"""Waits for a getdata message.
|
|
|
|
The object hashes in the inventory vector must match the provided hash_list."""
|
|
def test_function():
|
|
last_data = self.last_message.get("getdata")
|
|
if not last_data:
|
|
return False
|
|
return [x.hash for x in last_data.inv] == hash_list
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
def wait_for_getheaders(self, timeout=60):
|
|
"""Waits for a getheaders message.
|
|
|
|
Receiving any getheaders message will satisfy the predicate. the last_message["getheaders"]
|
|
value must be explicitly cleared before calling this method, or this will return
|
|
immediately with success. TODO: change this method to take a hash value and only
|
|
return true if the correct block header has been requested."""
|
|
def test_function():
|
|
return self.last_message.get("getheaders2") if self.nServices & NODE_HEADERS_COMPRESSED \
|
|
else self.last_message.get("getheaders")
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
def wait_for_inv(self, expected_inv, timeout=60):
|
|
"""Waits for an INV message and checks that the first inv object in the message was as expected."""
|
|
if len(expected_inv) > 1:
|
|
raise NotImplementedError("wait_for_inv() will only verify the first inv object")
|
|
|
|
def test_function():
|
|
return self.last_message.get("inv") and \
|
|
self.last_message["inv"].inv[0].type == expected_inv[0].type and \
|
|
self.last_message["inv"].inv[0].hash == expected_inv[0].hash
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
def wait_for_verack(self, timeout=60):
|
|
def test_function():
|
|
return "verack" in self.last_message
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
|
|
# Message sending helper functions
|
|
|
|
def send_and_ping(self, message, timeout=60):
|
|
self.send_message(message)
|
|
self.sync_with_ping(timeout=timeout)
|
|
|
|
def sync_send_with_ping(self, timeout=60):
|
|
"""Ensure SendMessages is called on this connection"""
|
|
# Calling sync_with_ping twice requires that the node calls
|
|
# `ProcessMessage` twice, and thus ensures `SendMessages` must have
|
|
# been called at least once
|
|
self.sync_with_ping()
|
|
self.sync_with_ping()
|
|
|
|
def sync_with_ping(self, timeout=60):
|
|
"""Ensure ProcessMessages is called on this connection"""
|
|
self.send_message(msg_ping(nonce=self.ping_counter))
|
|
|
|
def test_function():
|
|
return self.last_message.get("pong") and self.last_message["pong"].nonce == self.ping_counter
|
|
|
|
self.wait_until(test_function, timeout=timeout)
|
|
self.ping_counter += 1
|
|
|
|
|
|
# One lock for synchronizing all data access between the network event loop (see
|
|
# NetworkThread below) and the thread running the test logic. For simplicity,
|
|
# P2PConnection acquires this lock whenever delivering a message to a P2PInterface.
|
|
# This lock should be acquired in the thread running the test logic to synchronize
|
|
# access to any data shared with the P2PInterface or P2PConnection.
|
|
p2p_lock = threading.Lock()
|
|
|
|
|
|
class NetworkThread(threading.Thread):
|
|
network_event_loop = None
|
|
|
|
def __init__(self):
|
|
super().__init__(name="NetworkThread")
|
|
# There is only one event loop and no more than one thread must be created
|
|
assert not self.network_event_loop
|
|
|
|
NetworkThread.listeners = {}
|
|
NetworkThread.protos = {}
|
|
NetworkThread.network_event_loop = asyncio.new_event_loop()
|
|
|
|
def run(self):
|
|
"""Start the network thread."""
|
|
self.network_event_loop.run_forever()
|
|
|
|
def close(self, timeout=10):
|
|
"""Close the connections and network event loop."""
|
|
self.network_event_loop.call_soon_threadsafe(self.network_event_loop.stop)
|
|
wait_until_helper(lambda: not self.network_event_loop.is_running(), timeout=timeout)
|
|
self.network_event_loop.close()
|
|
self.join(timeout)
|
|
# Safe to remove event loop.
|
|
NetworkThread.network_event_loop = None
|
|
|
|
@classmethod
|
|
def listen(cls, p2p, callback, port=None, addr=None, idx=1):
|
|
""" Ensure a listening server is running on the given port, and run the
|
|
protocol specified by `p2p` on the next connection to it. Once ready
|
|
for connections, call `callback`."""
|
|
|
|
if port is None:
|
|
assert 0 < idx <= MAX_NODES
|
|
port = p2p_port(MAX_NODES - idx)
|
|
if addr is None:
|
|
addr = '127.0.0.1'
|
|
|
|
coroutine = cls.create_listen_server(addr, port, callback, p2p)
|
|
cls.network_event_loop.call_soon_threadsafe(cls.network_event_loop.create_task, coroutine)
|
|
|
|
@classmethod
|
|
async def create_listen_server(cls, addr, port, callback, proto):
|
|
def peer_protocol():
|
|
"""Returns a function that does the protocol handling for a new
|
|
connection. To allow different connections to have different
|
|
behaviors, the protocol function is first put in the cls.protos
|
|
dict. When the connection is made, the function removes the
|
|
protocol function from that dict, and returns it so the event loop
|
|
can start executing it."""
|
|
response = cls.protos.get((addr, port))
|
|
cls.protos[(addr, port)] = None
|
|
return response
|
|
|
|
if (addr, port) not in cls.listeners:
|
|
# When creating a listener on a given (addr, port) we only need to
|
|
# do it once. If we want different behaviors for different
|
|
# connections, we can accomplish this by providing different
|
|
# `proto` functions
|
|
|
|
listener = await cls.network_event_loop.create_server(peer_protocol, addr, port)
|
|
logger.debug("Listening server on %s:%d should be started" % (addr, port))
|
|
cls.listeners[(addr, port)] = listener
|
|
|
|
cls.protos[(addr, port)] = proto
|
|
callback(addr, port)
|
|
|
|
|
|
class P2PDataStore(P2PInterface):
|
|
"""A P2P data store class.
|
|
|
|
Keeps a block and transaction store and responds correctly to getdata and getheaders requests."""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
# store of blocks. key is block hash, value is a CBlock object
|
|
self.block_store = {}
|
|
self.last_block_hash = ''
|
|
# store of txs. key is txid, value is a CTransaction object
|
|
self.tx_store = {}
|
|
self.getdata_requests = []
|
|
|
|
def on_getdata(self, message):
|
|
"""Check for the tx/block in our stores and if found, reply with an inv message."""
|
|
for inv in message.inv:
|
|
self.getdata_requests.append(inv.hash)
|
|
if (inv.type & MSG_TYPE_MASK) == MSG_TX and inv.hash in self.tx_store.keys():
|
|
self.send_message(msg_tx(self.tx_store[inv.hash]))
|
|
elif (inv.type & MSG_TYPE_MASK) == MSG_BLOCK and inv.hash in self.block_store.keys():
|
|
self.send_message(msg_block(self.block_store[inv.hash]))
|
|
else:
|
|
logger.debug('getdata message type {} received.'.format(hex(inv.type)))
|
|
|
|
def _compute_requested_block_headers(self, locator, hash_stop):
|
|
# Assume that the most recent block added is the tip
|
|
if not self.block_store:
|
|
return
|
|
|
|
headers_list = [self.block_store[self.last_block_hash]]
|
|
while headers_list[-1].sha256 not in locator.vHave:
|
|
# Walk back through the block store, adding headers to headers_list
|
|
# as we go.
|
|
prev_block_hash = headers_list[-1].hashPrevBlock
|
|
if prev_block_hash in self.block_store:
|
|
prev_block_header = CBlockHeader(self.block_store[prev_block_hash])
|
|
headers_list.append(prev_block_header)
|
|
if prev_block_header.sha256 == hash_stop:
|
|
# if this is the hashstop header, stop here
|
|
break
|
|
else:
|
|
logger.debug('block hash {} not found in block store'.format(hex(prev_block_hash)))
|
|
break
|
|
|
|
# Truncate the list if there are too many headers
|
|
headers_list = headers_list[:-MAX_HEADERS_RESULTS - 1:-1]
|
|
|
|
return headers_list
|
|
|
|
def on_getheaders2(self, message):
|
|
"""Search back through our block store for the locator, and reply with a compressed headers message if found."""
|
|
|
|
headers_list = self._compute_requested_block_headers(message.locator, message.hashstop)
|
|
compressible_headers_list = [CompressibleBlockHeader(h) for h in headers_list] if headers_list else None
|
|
response = msg_headers2(compressible_headers_list)
|
|
|
|
if response is not None:
|
|
self.send_message(response)
|
|
|
|
def on_getheaders(self, message):
|
|
"""Search back through our block store for the locator, and reply with a headers message if found."""
|
|
|
|
headers_list = self._compute_requested_block_headers(message.locator, message.hashstop)
|
|
response = msg_headers(headers_list)
|
|
|
|
if response is not None:
|
|
self.send_message(response)
|
|
|
|
def send_blocks_and_test(self, blocks, node, *, success=True, force_send=False, reject_reason=None, expect_disconnect=False, timeout=60):
|
|
"""Send blocks to test node and test whether the tip advances.
|
|
|
|
- add all blocks to our block_store
|
|
- send a headers message for the final block
|
|
- the on_getheaders handler will ensure that any getheaders are responded to
|
|
- if force_send is False: wait for getdata for each of the blocks. The on_getdata handler will
|
|
ensure that any getdata messages are responded to. Otherwise send the full block unsolicited.
|
|
- if success is True: assert that the node's tip advances to the most recent block
|
|
- if success is False: assert that the node's tip doesn't advance
|
|
- if reject_reason is set: assert that the correct reject message is logged"""
|
|
|
|
with p2p_lock:
|
|
for block in blocks:
|
|
self.block_store[block.sha256] = block
|
|
self.last_block_hash = block.sha256
|
|
|
|
reject_reason = [reject_reason] if reject_reason else []
|
|
with node.assert_debug_log(expected_msgs=reject_reason):
|
|
if force_send:
|
|
for b in blocks:
|
|
self.send_message(msg_block(block=b))
|
|
else:
|
|
self.send_message(msg_headers([CBlockHeader(block) for block in blocks]))
|
|
self.wait_until(
|
|
lambda: blocks[-1].sha256 in self.getdata_requests,
|
|
timeout=timeout,
|
|
check_connected=success,
|
|
)
|
|
|
|
if expect_disconnect:
|
|
self.wait_for_disconnect()
|
|
else:
|
|
self.sync_with_ping()
|
|
|
|
if success:
|
|
self.wait_until(lambda: node.getbestblockhash() == blocks[-1].hash, timeout=timeout)
|
|
else:
|
|
assert node.getbestblockhash() != blocks[-1].hash
|
|
|
|
def send_txs_and_test(self, txs, node, *, success=True, expect_disconnect=False, reject_reason=None):
|
|
"""Send txs to test node and test whether they're accepted to the mempool.
|
|
|
|
- add all txs to our tx_store
|
|
- send tx messages for all txs
|
|
- if success is True/False: assert that the txs are/are not accepted to the mempool
|
|
- if expect_disconnect is True: Skip the sync with ping
|
|
- if reject_reason is set: assert that the correct reject message is logged."""
|
|
|
|
with p2p_lock:
|
|
for tx in txs:
|
|
self.tx_store[tx.sha256] = tx
|
|
|
|
reject_reason = [reject_reason] if reject_reason else []
|
|
with node.assert_debug_log(expected_msgs=reject_reason):
|
|
for tx in txs:
|
|
self.send_message(msg_tx(tx))
|
|
|
|
if expect_disconnect:
|
|
self.wait_for_disconnect()
|
|
else:
|
|
self.sync_with_ping()
|
|
|
|
raw_mempool = node.getrawmempool()
|
|
if success:
|
|
# Check that all txs are now in the mempool
|
|
for tx in txs:
|
|
assert tx.hash in raw_mempool, "{} not found in mempool".format(tx.hash)
|
|
else:
|
|
# Check that none of the txs are now in the mempool
|
|
for tx in txs:
|
|
assert tx.hash not in raw_mempool, "{} tx found in mempool".format(tx.hash)
|
|
|
|
class P2PTxInvStore(P2PInterface):
|
|
"""A P2PInterface which stores a count of how many times each txid has been announced."""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.tx_invs_received = defaultdict(int)
|
|
|
|
def on_inv(self, message):
|
|
super().on_inv(message) # Send getdata in response.
|
|
# Store how many times invs have been received for each tx.
|
|
for i in message.inv:
|
|
if i.type == MSG_TX:
|
|
# save txid
|
|
self.tx_invs_received[i.hash] += 1
|
|
|
|
def get_invs(self):
|
|
with p2p_lock:
|
|
return list(self.tx_invs_received.keys())
|
|
|
|
def wait_for_broadcast(self, txns, timeout=60):
|
|
"""Waits for the txns (list of txids) to complete initial broadcast.
|
|
The mempool should mark unbroadcast=False for these transactions.
|
|
"""
|
|
# Wait until invs have been received (and getdatas sent) for each txid.
|
|
self.wait_until(lambda: set(self.tx_invs_received.keys()) == set([int(tx, 16) for tx in txns]), timeout=timeout)
|
|
# Flush messages and wait for the getdatas to be processed
|
|
self.sync_with_ping()
|