neobytes/src/privatesend-client.h

151 lines
5.5 KiB
C
Raw Normal View History

// Copyright (c) 2014-2017 The Dash Core developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef PRIVATESENDCLIENT_H
#define PRIVATESENDCLIENT_H
#include "masternode.h"
#include "privatesend.h"
#include "wallet/wallet.h"
#include "privatesend-util.h"
class CPrivateSendClient;
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
class CConnman;
static const int DENOMS_COUNT_MAX = 100;
static const int DEFAULT_PRIVATESEND_ROUNDS = 2;
static const int DEFAULT_PRIVATESEND_AMOUNT = 1000;
static const int DEFAULT_PRIVATESEND_LIQUIDITY = 0;
static const bool DEFAULT_PRIVATESEND_MULTISESSION = false;
// Warn user if mixing in gui or try to create backup if mixing in daemon mode
// when we have only this many keys left
static const int PRIVATESEND_KEYS_THRESHOLD_WARNING = 100;
// Stop mixing completely, it's too dangerous to continue when we have only this many keys left
static const int PRIVATESEND_KEYS_THRESHOLD_STOP = 50;
// The main object for accessing mixing
extern CPrivateSendClient privateSendClient;
/** Used to keep track of current status of mixing pool
*/
class CPrivateSendClient : public CPrivateSendBase
{
private:
// Keep track of the used Masternodes
std::vector<COutPoint> vecMasternodesUsed;
std::vector<CAmount> vecDenominationsSkipped;
std::vector<COutPoint> vecOutPointLocked;
int nCachedLastSuccessBlock;
int nMinBlocksToWait; // how many blocks to wait after one successful mixing tx in non-multisession mode
// Keep track of current block height
int nCachedBlockHeight;
int nEntriesCount;
bool fLastEntryAccepted;
std::string strLastMessage;
std::string strAutoDenomResult;
masternode_info_t infoMixingMasternode;
CMutableTransaction txMyCollateral; // client side collateral
CKeyHolderStorage keyHolderStorage; // storage for keys used in PrepareDenominate
/// Check for process
void CheckPool();
void CompletedTransaction(PoolMessage nMessageID);
bool IsDenomSkipped(CAmount nDenomValue) {
return std::find(vecDenominationsSkipped.begin(), vecDenominationsSkipped.end(), nDenomValue) != vecDenominationsSkipped.end();
}
bool WaitForAnotherBlock();
// Make sure we have enough keys since last backup
bool CheckAutomaticBackup();
Eliminate remaining uses of g_connman in Dash-specific code. (#1635) This monstrous change eliminates all remaining uses of g_connman global variable in Dash-specific code. Unlike previous changes eliminating g_connman use that were isolated to particular modules, this one covers multiple modules simultaneously because they are so interdependent that change in one module was quickly spreading to others. This is mostly invariant change that was done by * changing all functions using g_connman to use connman argument, * changing all functions calling these functions to use connman argument, * repeating previous step until there's nothing to change. After multiple iterations, this process converged to final result, producing code that is mostly equivalent to original one, but passing CConnman instance through arguments instead of global variable. The only exception to equivalence of resulting code is that I had to create overload of CMasternodeMan::CheckAndRemove() method without arguments that does nothing just for use in CFlatDB<CMasternodeMan>::Dump() and CFlatDB<CMasternodeMan>::Load() methods. Normal CMasternodeMan::CheckAndRemove() overload now has argument of CConnman& type and is used everywhere else. The normal overload has this code in the beginning: if(!masternodeSync.IsMasternodeListSynced()) return; Masternode list is not synced yet when we load "mncache.dat" file, and we save "mncache.dat" file on shutdown, so I presume that it's OK to use overload that does nothing in both cases. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-09-19 16:51:38 +02:00
bool JoinExistingQueue(CAmount nBalanceNeedsAnonymized, CConnman& connman);
bool StartNewQueue(CAmount nValueMin, CAmount nBalanceNeedsAnonymized, CConnman& connman);
/// Create denominations
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool CreateDenominated(CConnman& connman);
bool CreateDenominated(const CompactTallyItem& tallyItem, bool fCreateMixingCollaterals, CConnman& connman);
/// Split up large inputs or make fee sized inputs
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool MakeCollateralAmounts(CConnman& connman);
bool MakeCollateralAmounts(const CompactTallyItem& tallyItem, bool fTryDenominated, CConnman& connman);
/// As a client, submit part of a future mixing transaction to a Masternode to start the process
Eliminate remaining uses of g_connman in Dash-specific code. (#1635) This monstrous change eliminates all remaining uses of g_connman global variable in Dash-specific code. Unlike previous changes eliminating g_connman use that were isolated to particular modules, this one covers multiple modules simultaneously because they are so interdependent that change in one module was quickly spreading to others. This is mostly invariant change that was done by * changing all functions using g_connman to use connman argument, * changing all functions calling these functions to use connman argument, * repeating previous step until there's nothing to change. After multiple iterations, this process converged to final result, producing code that is mostly equivalent to original one, but passing CConnman instance through arguments instead of global variable. The only exception to equivalence of resulting code is that I had to create overload of CMasternodeMan::CheckAndRemove() method without arguments that does nothing just for use in CFlatDB<CMasternodeMan>::Dump() and CFlatDB<CMasternodeMan>::Load() methods. Normal CMasternodeMan::CheckAndRemove() overload now has argument of CConnman& type and is used everywhere else. The normal overload has this code in the beginning: if(!masternodeSync.IsMasternodeListSynced()) return; Masternode list is not synced yet when we load "mncache.dat" file, and we save "mncache.dat" file on shutdown, so I presume that it's OK to use overload that does nothing in both cases. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-09-19 16:51:38 +02:00
bool SubmitDenominate(CConnman& connman);
/// step 1: prepare denominated inputs and outputs
bool PrepareDenominate(int nMinRounds, int nMaxRounds, std::string& strErrorRet, std::vector<CTxDSIn>& vecTxDSInRet, std::vector<CTxOut>& vecTxOutRet);
/// step 2: send denominated inputs and outputs prepared in step 1
bool SendDenominate(const std::vector<CTxDSIn>& vecTxDSIn, const std::vector<CTxOut>& vecTxOut, CConnman& connman);
/// Get Masternode updates about the progress of mixing
bool CheckPoolStateUpdate(PoolState nStateNew, int nEntriesCountNew, PoolStatusUpdate nStatusUpdate, PoolMessage nMessageID, int nSessionIDNew=0);
// Set the 'state' value, with some logging and capturing when the state changed
void SetState(PoolState nStateNew);
/// As a client, check and sign the final transaction
Eliminate remaining uses of g_connman in Dash-specific code. (#1635) This monstrous change eliminates all remaining uses of g_connman global variable in Dash-specific code. Unlike previous changes eliminating g_connman use that were isolated to particular modules, this one covers multiple modules simultaneously because they are so interdependent that change in one module was quickly spreading to others. This is mostly invariant change that was done by * changing all functions using g_connman to use connman argument, * changing all functions calling these functions to use connman argument, * repeating previous step until there's nothing to change. After multiple iterations, this process converged to final result, producing code that is mostly equivalent to original one, but passing CConnman instance through arguments instead of global variable. The only exception to equivalence of resulting code is that I had to create overload of CMasternodeMan::CheckAndRemove() method without arguments that does nothing just for use in CFlatDB<CMasternodeMan>::Dump() and CFlatDB<CMasternodeMan>::Load() methods. Normal CMasternodeMan::CheckAndRemove() overload now has argument of CConnman& type and is used everywhere else. The normal overload has this code in the beginning: if(!masternodeSync.IsMasternodeListSynced()) return; Masternode list is not synced yet when we load "mncache.dat" file, and we save "mncache.dat" file on shutdown, so I presume that it's OK to use overload that does nothing in both cases. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-09-19 16:51:38 +02:00
bool SignFinalTransaction(const CTransaction& finalTransactionNew, CNode* pnode, CConnman& connman);
Eliminate remaining uses of g_connman in Dash-specific code. (#1635) This monstrous change eliminates all remaining uses of g_connman global variable in Dash-specific code. Unlike previous changes eliminating g_connman use that were isolated to particular modules, this one covers multiple modules simultaneously because they are so interdependent that change in one module was quickly spreading to others. This is mostly invariant change that was done by * changing all functions using g_connman to use connman argument, * changing all functions calling these functions to use connman argument, * repeating previous step until there's nothing to change. After multiple iterations, this process converged to final result, producing code that is mostly equivalent to original one, but passing CConnman instance through arguments instead of global variable. The only exception to equivalence of resulting code is that I had to create overload of CMasternodeMan::CheckAndRemove() method without arguments that does nothing just for use in CFlatDB<CMasternodeMan>::Dump() and CFlatDB<CMasternodeMan>::Load() methods. Normal CMasternodeMan::CheckAndRemove() overload now has argument of CConnman& type and is used everywhere else. The normal overload has this code in the beginning: if(!masternodeSync.IsMasternodeListSynced()) return; Masternode list is not synced yet when we load "mncache.dat" file, and we save "mncache.dat" file on shutdown, so I presume that it's OK to use overload that does nothing in both cases. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-09-19 16:51:38 +02:00
void RelayIn(const CDarkSendEntry& entry, CConnman& connman);
void SetNull();
public:
int nPrivateSendRounds;
int nPrivateSendAmount;
int nLiquidityProvider;
bool fEnablePrivateSend;
bool fPrivateSendMultiSession;
int nCachedNumBlocks; //used for the overview screen
bool fCreateAutoBackups; //builtin support for automatic backups
CPrivateSendClient() :
nCachedLastSuccessBlock(0),
nMinBlocksToWait(1),
txMyCollateral(CMutableTransaction()),
nPrivateSendRounds(DEFAULT_PRIVATESEND_ROUNDS),
nPrivateSendAmount(DEFAULT_PRIVATESEND_AMOUNT),
nLiquidityProvider(DEFAULT_PRIVATESEND_LIQUIDITY),
fEnablePrivateSend(false),
fPrivateSendMultiSession(DEFAULT_PRIVATESEND_MULTISESSION),
nCachedNumBlocks(std::numeric_limits<int>::max()),
fCreateAutoBackups(true) { SetNull(); }
Eliminate remaining uses of g_connman in Dash-specific code. (#1635) This monstrous change eliminates all remaining uses of g_connman global variable in Dash-specific code. Unlike previous changes eliminating g_connman use that were isolated to particular modules, this one covers multiple modules simultaneously because they are so interdependent that change in one module was quickly spreading to others. This is mostly invariant change that was done by * changing all functions using g_connman to use connman argument, * changing all functions calling these functions to use connman argument, * repeating previous step until there's nothing to change. After multiple iterations, this process converged to final result, producing code that is mostly equivalent to original one, but passing CConnman instance through arguments instead of global variable. The only exception to equivalence of resulting code is that I had to create overload of CMasternodeMan::CheckAndRemove() method without arguments that does nothing just for use in CFlatDB<CMasternodeMan>::Dump() and CFlatDB<CMasternodeMan>::Load() methods. Normal CMasternodeMan::CheckAndRemove() overload now has argument of CConnman& type and is used everywhere else. The normal overload has this code in the beginning: if(!masternodeSync.IsMasternodeListSynced()) return; Masternode list is not synced yet when we load "mncache.dat" file, and we save "mncache.dat" file on shutdown, so I presume that it's OK to use overload that does nothing in both cases. Signed-off-by: Oleg Girko <ol@infoserver.lv>
2017-09-19 16:51:38 +02:00
void ProcessMessage(CNode* pfrom, std::string& strCommand, CDataStream& vRecv, CConnman& connman);
void ClearSkippedDenominations() { vecDenominationsSkipped.clear(); }
void SetMinBlocksToWait(int nMinBlocksToWaitIn) { nMinBlocksToWait = nMinBlocksToWaitIn; }
void ResetPool();
void UnlockCoins();
std::string GetStatus();
bool GetMixingMasternodeInfo(masternode_info_t& mnInfoRet);
bool IsMixingMasternode(const CNode* pnode);
/// Passively run mixing in the background according to the configuration in settings
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
bool DoAutomaticDenominating(CConnman& connman, bool fDryRun=false);
void CheckTimeout();
void UpdatedBlockTip(const CBlockIndex *pindex);
};
Backport Bitcoin PR#8085: p2p: Begin encapsulation (#1537) * net: move CBanDB and CAddrDB out of net.h/cpp This will eventually solve a circular dependency * net: Create CConnman to encapsulate p2p connections * net: Move socket binding into CConnman * net: move OpenNetworkConnection into CConnman * net: move ban and addrman functions into CConnman * net: Add oneshot functions to CConnman * net: move added node functions to CConnman * net: Add most functions needed for vNodes to CConnman * net: handle nodesignals in CConnman * net: Pass CConnection to wallet rather than using the global * net: Add rpc error for missing/disabled p2p functionality * net: Pass CConnman around as needed * gui: add NodeID to the peer table * net: create generic functor accessors and move vNodes to CConnman * net: move whitelist functions into CConnman * net: move nLastNodeId to CConnman * net: move nLocalHostNonce to CConnman This behavior seems to have been quite racy and broken. Move nLocalHostNonce into CNode, and check received nonces against all non-fully-connected nodes. If there's a match, assume we've connected to ourself. * net: move messageHandlerCondition to CConnman * net: move send/recv statistics to CConnman * net: move SendBufferSize/ReceiveFloodSize to CConnman * net: move nLocalServices/nRelevantServices to CConnman These are in-turn passed to CNode at connection time. This allows us to offer different services to different peers (or test the effects of doing so). * net: move semOutbound and semMasternodeOutbound to CConnman * net: SocketSendData returns written size * net: move max/max-outbound to CConnman * net: Pass best block known height into CConnman CConnman then passes the current best height into CNode at creation time. This way CConnman/CNode have no dependency on main for height, and the signals only move in one direction. This also helps to prevent identity leakage a tiny bit. Before this change, an attacker could theoretically make 2 connections on different interfaces. They would connect fully on one, and only establish the initial connection on the other. Once they receive a new block, they would relay it to your first connection, and immediately commence the version handshake on the second. Since the new block height is reflected immediately, they could attempt to learn whether the two connections were correlated. This is, of course, incredibly unlikely to work due to the small timings involved and receipt from other senders. But it doesn't hurt to lock-in nBestHeight at the time of connection, rather than letting the remote choose the time. * net: pass CClientUIInterface into CConnman * net: Drop StartNode/StopNode and use CConnman directly * net: Introduce CConnection::Options to avoid passing so many params * net: add nSendBufferMaxSize/nReceiveFloodSize to CConnection::Options * net: move vNodesDisconnected into CConnman * Made the ForEachNode* functions in src/net.cpp more pragmatic and self documenting * Convert ForEachNode* functions to take a templated function argument rather than a std::function to eliminate std::function overhead * net: move MAX_FEELER_CONNECTIONS into connman
2017-07-21 11:35:19 +02:00
void ThreadCheckPrivateSendClient(CConnman& connman);
#endif