neobytes/src/base58.h

408 lines
11 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
//
// Why base-58 instead of standard base-64 encoding?
// - Don't want 0OIl characters that look the same in some fonts and
// could be used to create visually identical looking account numbers.
// - A string with non-alphanumeric characters is not as easily accepted as an account number.
// - E-mail usually won't line-break if there's no punctuation to break at.
// - Doubleclicking selects the whole number as one word if it's all alphanumeric.
//
#ifndef BITCOIN_BASE58_H
#define BITCOIN_BASE58_H
#include <string>
#include <vector>
#include "bignum.h"
#include "key.h"
static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
2011-11-07 00:05:42 +01:00
// Encode a byte sequence as a base58-encoded string
inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend)
{
CAutoBN_CTX pctx;
CBigNum bn58 = 58;
CBigNum bn0 = 0;
// Convert big endian data to little endian
// Extra zero at the end make sure bignum will interpret as a positive number
std::vector<unsigned char> vchTmp(pend-pbegin+1, 0);
reverse_copy(pbegin, pend, vchTmp.begin());
// Convert little endian data to bignum
CBigNum bn;
bn.setvch(vchTmp);
// Convert bignum to std::string
std::string str;
2011-06-06 19:47:19 +02:00
// Expected size increase from base58 conversion is approximately 137%
// use 138% to be safe
str.reserve((pend - pbegin) * 138 / 100 + 1);
CBigNum dv;
CBigNum rem;
while (bn > bn0)
{
if (!BN_div(&dv, &rem, &bn, &bn58, pctx))
throw bignum_error("EncodeBase58 : BN_div failed");
bn = dv;
unsigned int c = rem.getulong();
str += pszBase58[c];
}
// Leading zeroes encoded as base58 zeros
for (const unsigned char* p = pbegin; p < pend && *p == 0; p++)
str += pszBase58[0];
// Convert little endian std::string to big endian
reverse(str.begin(), str.end());
return str;
}
2011-11-07 00:05:42 +01:00
// Encode a byte vector as a base58-encoded string
inline std::string EncodeBase58(const std::vector<unsigned char>& vch)
{
return EncodeBase58(&vch[0], &vch[0] + vch.size());
}
2011-11-07 00:05:42 +01:00
// Decode a base58-encoded string psz into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58(const char* psz, std::vector<unsigned char>& vchRet)
{
CAutoBN_CTX pctx;
vchRet.clear();
CBigNum bn58 = 58;
CBigNum bn = 0;
CBigNum bnChar;
while (isspace(*psz))
psz++;
// Convert big endian string to bignum
for (const char* p = psz; *p; p++)
{
const char* p1 = strchr(pszBase58, *p);
if (p1 == NULL)
{
while (isspace(*p))
p++;
if (*p != '\0')
return false;
break;
}
bnChar.setulong(p1 - pszBase58);
if (!BN_mul(&bn, &bn, &bn58, pctx))
throw bignum_error("DecodeBase58 : BN_mul failed");
bn += bnChar;
}
// Get bignum as little endian data
std::vector<unsigned char> vchTmp = bn.getvch();
// Trim off sign byte if present
if (vchTmp.size() >= 2 && vchTmp.end()[-1] == 0 && vchTmp.end()[-2] >= 0x80)
vchTmp.erase(vchTmp.end()-1);
// Restore leading zeros
int nLeadingZeros = 0;
for (const char* p = psz; *p == pszBase58[0]; p++)
nLeadingZeros++;
vchRet.assign(nLeadingZeros + vchTmp.size(), 0);
// Convert little endian data to big endian
reverse_copy(vchTmp.begin(), vchTmp.end(), vchRet.end() - vchTmp.size());
return true;
}
2011-11-07 00:05:42 +01:00
// Decode a base58-encoded string str into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58(const std::string& str, std::vector<unsigned char>& vchRet)
{
return DecodeBase58(str.c_str(), vchRet);
}
2011-11-07 00:05:42 +01:00
// Encode a byte vector to a base58-encoded string, including checksum
inline std::string EncodeBase58Check(const std::vector<unsigned char>& vchIn)
{
// add 4-byte hash check to the end
std::vector<unsigned char> vch(vchIn);
uint256 hash = Hash(vch.begin(), vch.end());
vch.insert(vch.end(), (unsigned char*)&hash, (unsigned char*)&hash + 4);
return EncodeBase58(vch);
}
2011-11-07 00:05:42 +01:00
// Decode a base58-encoded string psz that includes a checksum, into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58Check(const char* psz, std::vector<unsigned char>& vchRet)
{
if (!DecodeBase58(psz, vchRet))
return false;
if (vchRet.size() < 4)
{
vchRet.clear();
return false;
}
uint256 hash = Hash(vchRet.begin(), vchRet.end()-4);
if (memcmp(&hash, &vchRet.end()[-4], 4) != 0)
{
vchRet.clear();
return false;
}
vchRet.resize(vchRet.size()-4);
return true;
}
2011-11-07 00:05:42 +01:00
// Decode a base58-encoded string str that includes a checksum, into byte vector vchRet
// returns true if decoding is succesful
inline bool DecodeBase58Check(const std::string& str, std::vector<unsigned char>& vchRet)
{
return DecodeBase58Check(str.c_str(), vchRet);
}
2011-11-07 00:05:42 +01:00
// Base class for all base58-encoded data
class CBase58Data
{
protected:
2011-11-07 00:05:42 +01:00
// the version byte
unsigned char nVersion;
2011-11-07 00:05:42 +01:00
// the actually encoded data
std::vector<unsigned char> vchData;
CBase58Data()
{
nVersion = 0;
vchData.clear();
}
~CBase58Data()
{
2011-11-07 00:05:42 +01:00
// zero the memory, as it may contain sensitive data
if (!vchData.empty())
memset(&vchData[0], 0, vchData.size());
}
void SetData(int nVersionIn, const void* pdata, size_t nSize)
{
nVersion = nVersionIn;
vchData.resize(nSize);
if (!vchData.empty())
memcpy(&vchData[0], pdata, nSize);
}
void SetData(int nVersionIn, const unsigned char *pbegin, const unsigned char *pend)
{
SetData(nVersionIn, (void*)pbegin, pend - pbegin);
}
public:
bool SetString(const char* psz)
{
std::vector<unsigned char> vchTemp;
DecodeBase58Check(psz, vchTemp);
if (vchTemp.empty())
{
vchData.clear();
nVersion = 0;
return false;
}
nVersion = vchTemp[0];
vchData.resize(vchTemp.size() - 1);
if (!vchData.empty())
memcpy(&vchData[0], &vchTemp[1], vchData.size());
memset(&vchTemp[0], 0, vchTemp.size());
return true;
}
bool SetString(const std::string& str)
{
return SetString(str.c_str());
}
std::string ToString() const
{
std::vector<unsigned char> vch(1, nVersion);
vch.insert(vch.end(), vchData.begin(), vchData.end());
return EncodeBase58Check(vch);
}
int CompareTo(const CBase58Data& b58) const
{
if (nVersion < b58.nVersion) return -1;
if (nVersion > b58.nVersion) return 1;
if (vchData < b58.vchData) return -1;
if (vchData > b58.vchData) return 1;
return 0;
}
bool operator==(const CBase58Data& b58) const { return CompareTo(b58) == 0; }
bool operator<=(const CBase58Data& b58) const { return CompareTo(b58) <= 0; }
bool operator>=(const CBase58Data& b58) const { return CompareTo(b58) >= 0; }
bool operator< (const CBase58Data& b58) const { return CompareTo(b58) < 0; }
bool operator> (const CBase58Data& b58) const { return CompareTo(b58) > 0; }
};
2011-11-07 00:05:42 +01:00
// base58-encoded bitcoin addresses
// Public-key-hash-addresses have version 0 (or 192 testnet)
2011-11-07 00:05:42 +01:00
// The data vector contains RIPEMD160(SHA256(pubkey)), where pubkey is the serialized public key
// Script-hash-addresses (OP_EVAL) have version 5 (or 196 testnet)
// The data vector contains RIPEMD160(SHA256(cscript)), where cscript is the serialized redemption script
class CBitcoinAddress : public CBase58Data
{
public:
enum
{
PUBKEY_ADDRESS = 0,
SCRIPT_ADDRESS = 5,
PUBKEY_ADDRESS_TEST = 111,
SCRIPT_ADDRESS_TEST = 196,
};
bool SetHash160(const uint160& hash160)
{
SetData(fTestNet ? PUBKEY_ADDRESS_TEST : PUBKEY_ADDRESS, &hash160, 20);
return true;
}
void SetPubKey(const std::vector<unsigned char>& vchPubKey)
{
SetHash160(Hash160(vchPubKey));
}
bool SetScriptHash160(const uint160& hash160)
{
SetData(fTestNet ? SCRIPT_ADDRESS_TEST : SCRIPT_ADDRESS, &hash160, 20);
return true;
}
bool IsValid() const
{
int nExpectedSize = 20;
bool fExpectTestNet = false;
switch(nVersion)
{
case PUBKEY_ADDRESS:
nExpectedSize = 20; // Hash of public key
fExpectTestNet = false;
break;
case SCRIPT_ADDRESS:
nExpectedSize = 20; // OP_EVAL, hash of CScript
fExpectTestNet = false;
break;
case PUBKEY_ADDRESS_TEST:
nExpectedSize = 20;
fExpectTestNet = true;
break;
case SCRIPT_ADDRESS_TEST:
nExpectedSize = 20;
fExpectTestNet = true;
break;
default:
return false;
}
return fExpectTestNet == fTestNet && vchData.size() == nExpectedSize;
}
bool IsScript() const
{
if (!IsValid())
return false;
if (fTestNet)
return nVersion == SCRIPT_ADDRESS_TEST;
return nVersion == SCRIPT_ADDRESS;
}
CBitcoinAddress()
{
}
CBitcoinAddress(uint160 hash160In)
{
SetHash160(hash160In);
}
CBitcoinAddress(const std::vector<unsigned char>& vchPubKey)
{
SetPubKey(vchPubKey);
}
CBitcoinAddress(const std::string& strAddress)
{
SetString(strAddress);
}
CBitcoinAddress(const char* pszAddress)
{
SetString(pszAddress);
}
uint160 GetHash160() const
{
assert(vchData.size() == 20);
uint160 hash160;
memcpy(&hash160, &vchData[0], 20);
return hash160;
}
};
class CBitcoinSecret : public CBase58Data
{
public:
void SetSecret(const CSecret& vchSecret, bool fCompressed)
{
assert(vchSecret.size() == 32);
SetData(fTestNet ? 239 : 128, &vchSecret[0], vchSecret.size());
if (fCompressed)
vchData.push_back(1);
}
CSecret GetSecret(bool &fCompressedOut)
{
CSecret vchSecret;
vchSecret.resize(32);
memcpy(&vchSecret[0], &vchData[0], 32);
fCompressedOut = vchData.size() == 33;
return vchSecret;
}
bool IsValid() const
{
bool fExpectTestNet = false;
switch(nVersion)
{
case 128:
break;
case 239:
fExpectTestNet = true;
break;
default:
return false;
}
return fExpectTestNet == fTestNet && (vchData.size() == 32 || (vchData.size() == 33 && vchData[32] == 1));
}
CBitcoinSecret(const CSecret& vchSecret, bool fCompressed)
{
SetSecret(vchSecret, fCompressed);
}
CBitcoinSecret()
{
}
};
#endif