Merge #15826: Pure python EC

b67978529a Add comments to Python ECDSA implementation (John Newbery)
8c7b9324ca Pure python EC (Pieter Wuille)

Pull request description:

  This removes the dependency on OpenSSL for the interaction tests, by providing a pure-Python
  toy implementation of secp256k1.

ACKs for commit b67978:
  jnewbery:
    utACK b67978529ad02fc2665f2362418dc53db2e25e17

Tree-SHA512: 181445eb08b316c46937b80dc10aa50d103ab1fdddaf834896c0ea22204889f7b13fd33cbcbd00ddba15f7e4686fe0d9f8e8bb4c0ad0e9587490c90be83966dc
This commit is contained in:
MarcoFalke 2019-04-22 08:09:55 -04:00 committed by Vijay Das Manikpuri
parent 4bf6dc07d4
commit 790c9e784b
No known key found for this signature in database
GPG Key ID: DB1D81B01DB7C46E
3 changed files with 358 additions and 188 deletions

View File

@ -32,7 +32,7 @@ Start three nodes:
import time
from test_framework.blocktools import (create_block, create_coinbase)
from test_framework.key import CECKey
from test_framework.key import ECKey
from test_framework.messages import (
CBlockHeader,
COutPoint,
@ -105,9 +105,9 @@ class AssumeValidTest(BitcoinTestFramework):
self.blocks = []
# Get a pubkey for the coinbase TXO
coinbase_key = CECKey()
coinbase_key.set_secretbytes(b"horsebattery")
coinbase_pubkey = coinbase_key.get_pubkey()
coinbase_key = ECKey()
coinbase_key.generate()
coinbase_pubkey = coinbase_key.get_pubkey().get_bytes()
# Create the first block with a coinbase output to our key
height = 1

View File

@ -7,7 +7,7 @@ import copy
import struct
from test_framework.blocktools import create_block, create_coinbase, create_tx_with_script, get_legacy_sigopcount_block
from test_framework.key import CECKey
from test_framework.key import ECKey
from test_framework.messages import (
CBlock,
COIN,
@ -85,9 +85,9 @@ class FullBlockTest(BitcoinTestFramework):
self.bootstrap_p2p() # Add one p2p connection to the node
self.block_heights = {}
self.coinbase_key = CECKey()
self.coinbase_key.set_secretbytes(b"horsebattery")
self.coinbase_pubkey = self.coinbase_key.get_pubkey()
self.coinbase_key = ECKey()
self.coinbase_key.generate()
self.coinbase_pubkey = self.coinbase_key.get_pubkey().get_bytes()
self.tip = None
self.blocks = {}
self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
@ -481,7 +481,7 @@ class FullBlockTest(BitcoinTestFramework):
tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b''))
# Note: must pass the redeem_script (not p2sh_script) to the signature hash function
(sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL)
sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))
sig = self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL]))
scriptSig = CScript([sig, redeem_script])
tx.vin[1].scriptSig = scriptSig
@ -1225,7 +1225,7 @@ class FullBlockTest(BitcoinTestFramework):
tx.vin[0].scriptSig = CScript()
return
(sighash, err) = SignatureHash(spend_tx.vout[0].scriptPubKey, tx, 0, SIGHASH_ALL)
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))])
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL]))])
def create_and_sign_transaction(self, spend_tx, value, script=CScript([OP_TRUE])):
tx = self.create_tx(spend_tx, 0, value, script)

View File

@ -1,216 +1,386 @@
# Copyright (c) 2011 Sam Rushing
"""ECC secp256k1 OpenSSL wrapper.
# Copyright (c) 2019 Pieter Wuille
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only secp256k1 elliptic curve implementation
WARNING: This module does not mlock() secrets; your private keys may end up on
disk in swap! Use with caution!
WARNING: This code is slow, uses bad randomness, does not properly protect
keys, and is trivially vulnerable to side channel attacks. Do not use for
anything but tests."""
import random
This file is modified from python-bitcoinlib.
"""
def modinv(a, n):
"""Compute the modular inverse of a modulo n
import ctypes
import ctypes.util
import hashlib
See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers.
"""
t1, t2 = 0, 1
r1, r2 = n, a
while r2 != 0:
q = r1 // r2
t1, t2 = t2, t1 - q * t2
r1, r2 = r2, r1 - q * r2
if r1 > 1:
return None
if t1 < 0:
t1 += n
return t1
ssl = ctypes.cdll.LoadLibrary(ctypes.util.find_library ('ssl') or 'libeay32')
def jacobi_symbol(n, k):
"""Compute the Jacobi symbol of n modulo k
ssl.BN_new.restype = ctypes.c_void_p
ssl.BN_new.argtypes = []
See http://en.wikipedia.org/wiki/Jacobi_symbol
ssl.BN_bin2bn.restype = ctypes.c_void_p
ssl.BN_bin2bn.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.c_void_p]
For our application k is always prime, so this is the same as the Legendre symbol."""
assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k"
n %= k
t = 0
while n != 0:
while n & 1 == 0:
n >>= 1
r = k & 7
t ^= (r == 3 or r == 5)
n, k = k, n
t ^= (n & k & 3 == 3)
n = n % k
if k == 1:
return -1 if t else 1
return 0
ssl.BN_CTX_free.restype = None
ssl.BN_CTX_free.argtypes = [ctypes.c_void_p]
def modsqrt(a, p):
"""Compute the square root of a modulo p when p % 4 = 3.
ssl.BN_CTX_new.restype = ctypes.c_void_p
ssl.BN_CTX_new.argtypes = []
The Tonelli-Shanks algorithm can be used. See https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm
ssl.ECDH_compute_key.restype = ctypes.c_int
ssl.ECDH_compute_key.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p]
Limiting this function to only work for p % 4 = 3 means we don't need to
iterate through the loop. The highest n such that p - 1 = 2^n Q with Q odd
is n = 1. Therefore Q = (p-1)/2 and sqrt = a^((Q+1)/2) = a^((p+1)/4)
ssl.ECDSA_sign.restype = ctypes.c_int
ssl.ECDSA_sign.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
secp256k1's is defined over field of size 2**256 - 2**32 - 977, which is 3 mod 4.
"""
if p % 4 != 3:
raise NotImplementedError("modsqrt only implemented for p % 4 = 3")
sqrt = pow(a, (p + 1)//4, p)
if pow(sqrt, 2, p) == a % p:
return sqrt
return None
ssl.ECDSA_verify.restype = ctypes.c_int
ssl.ECDSA_verify.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p]
class EllipticCurve:
def __init__(self, p, a, b):
"""Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p)."""
self.p = p
self.a = a % p
self.b = b % p
ssl.EC_KEY_free.restype = None
ssl.EC_KEY_free.argtypes = [ctypes.c_void_p]
def affine(self, p1):
"""Convert a Jacobian point tuple p1 to affine form, or None if at infinity.
ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
ssl.EC_KEY_new_by_curve_name.argtypes = [ctypes.c_int]
An affine point is represented as the Jacobian (x, y, 1)"""
x1, y1, z1 = p1
if z1 == 0:
return None
inv = modinv(z1, self.p)
inv_2 = (inv**2) % self.p
inv_3 = (inv_2 * inv) % self.p
return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1)
ssl.EC_KEY_get0_group.restype = ctypes.c_void_p
ssl.EC_KEY_get0_group.argtypes = [ctypes.c_void_p]
def negate(self, p1):
"""Negate a Jacobian point tuple p1."""
x1, y1, z1 = p1
return (x1, (self.p - y1) % self.p, z1)
ssl.EC_KEY_get0_public_key.restype = ctypes.c_void_p
ssl.EC_KEY_get0_public_key.argtypes = [ctypes.c_void_p]
def on_curve(self, p1):
"""Determine whether a Jacobian tuple p is on the curve (and not infinity)"""
x1, y1, z1 = p1
z2 = pow(z1, 2, self.p)
z4 = pow(z2, 2, self.p)
return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0
ssl.EC_KEY_set_private_key.restype = ctypes.c_int
ssl.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def is_x_coord(self, x):
"""Test whether x is a valid X coordinate on the curve."""
x_3 = pow(x, 3, self.p)
return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1
ssl.EC_KEY_set_conv_form.restype = None
ssl.EC_KEY_set_conv_form.argtypes = [ctypes.c_void_p, ctypes.c_int]
def lift_x(self, x):
"""Given an X coordinate on the curve, return a corresponding affine point."""
x_3 = pow(x, 3, self.p)
v = x_3 + self.a * x + self.b
y = modsqrt(v, self.p)
if y is None:
return None
return (x, y, 1)
ssl.EC_KEY_set_public_key.restype = ctypes.c_int
ssl.EC_KEY_set_public_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def double(self, p1):
"""Double a Jacobian tuple p1
ssl.i2o_ECPublicKey.restype = ctypes.c_void_p
ssl.i2o_ECPublicKey.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Doubling"""
x1, y1, z1 = p1
if z1 == 0:
return (0, 1, 0)
y1_2 = (y1**2) % self.p
y1_4 = (y1_2**2) % self.p
x1_2 = (x1**2) % self.p
s = (4*x1*y1_2) % self.p
m = 3*x1_2
if self.a:
m += self.a * pow(z1, 4, self.p)
m = m % self.p
x2 = (m**2 - 2*s) % self.p
y2 = (m*(s - x2) - 8*y1_4) % self.p
z2 = (2*y1*z1) % self.p
return (x2, y2, z2)
ssl.EC_POINT_new.restype = ctypes.c_void_p
ssl.EC_POINT_new.argtypes = [ctypes.c_void_p]
def add_mixed(self, p1, p2):
"""Add a Jacobian tuple p1 and an affine tuple p2
ssl.EC_POINT_free.restype = None
ssl.EC_POINT_free.argtypes = [ctypes.c_void_p]
See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition (with affine point)"""
x1, y1, z1 = p1
x2, y2, z2 = p2
assert(z2 == 1)
# Adding to the point at infinity is a no-op
if z1 == 0:
return p2
z1_2 = (z1**2) % self.p
z1_3 = (z1_2 * z1) % self.p
u2 = (x2 * z1_2) % self.p
s2 = (y2 * z1_3) % self.p
if x1 == u2:
if (y1 != s2):
# p1 and p2 are inverses. Return the point at infinity.
return (0, 1, 0)
# p1 == p2. The formulas below fail when the two points are equal.
return self.double(p1)
h = u2 - x1
r = s2 - y1
h_2 = (h**2) % self.p
h_3 = (h_2 * h) % self.p
u1_h_2 = (x1 * h_2) % self.p
x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p
z3 = (h*z1) % self.p
return (x3, y3, z3)
ssl.EC_POINT_mul.restype = ctypes.c_int
ssl.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
def add(self, p1, p2):
"""Add two Jacobian tuples p1 and p2
# this specifies the curve used with ECDSA.
NID_secp256k1 = 714 # from openssl/obj_mac.h
See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition"""
x1, y1, z1 = p1
x2, y2, z2 = p2
# Adding the point at infinity is a no-op
if z1 == 0:
return p2
if z2 == 0:
return p1
# Adding an Affine to a Jacobian is more efficient since we save field multiplications and squarings when z = 1
if z1 == 1:
return self.add_mixed(p2, p1)
if z2 == 1:
return self.add_mixed(p1, p2)
z1_2 = (z1**2) % self.p
z1_3 = (z1_2 * z1) % self.p
z2_2 = (z2**2) % self.p
z2_3 = (z2_2 * z2) % self.p
u1 = (x1 * z2_2) % self.p
u2 = (x2 * z1_2) % self.p
s1 = (y1 * z2_3) % self.p
s2 = (y2 * z1_3) % self.p
if u1 == u2:
if (s1 != s2):
# p1 and p2 are inverses. Return the point at infinity.
return (0, 1, 0)
# p1 == p2. The formulas below fail when the two points are equal.
return self.double(p1)
h = u2 - u1
r = s2 - s1
h_2 = (h**2) % self.p
h_3 = (h_2 * h) % self.p
u1_h_2 = (u1 * h_2) % self.p
x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p
z3 = (h*z1*z2) % self.p
return (x3, y3, z3)
def mul(self, ps):
"""Compute a (multi) point multiplication
ps is a list of (Jacobian tuple, scalar) pairs.
"""
r = (0, 1, 0)
for i in range(255, -1, -1):
r = self.double(r)
for (p, n) in ps:
if ((n >> i) & 1):
r = self.add(r, p)
return r
SECP256K1 = EllipticCurve(2**256 - 2**32 - 977, 0, 7)
SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1)
SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2
# Thx to Sam Devlin for the ctypes magic 64-bit fix.
def _check_result(val, func, args):
if val == 0:
raise ValueError
else:
return ctypes.c_void_p (val)
ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
ssl.EC_KEY_new_by_curve_name.errcheck = _check_result
class CECKey():
"""Wrapper around OpenSSL's EC_KEY"""
class ECPubKey():
"""A secp256k1 public key"""
def __init__(self):
self.k = ssl.EC_KEY_new_by_curve_name(NID_secp256k1)
"""Construct an uninitialized public key"""
self.valid = False
def __del__(self):
if ssl:
ssl.EC_KEY_free(self.k)
self.k = None
def set_secretbytes(self, secret):
priv_key = ssl.BN_bin2bn(secret, 32, ssl.BN_new())
group = ssl.EC_KEY_get0_group(self.k)
pub_key = ssl.EC_POINT_new(group)
ctx = ssl.BN_CTX_new()
if not ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx):
raise ValueError("Could not derive public key from the supplied secret.")
ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx)
ssl.EC_KEY_set_private_key(self.k, priv_key)
ssl.EC_KEY_set_public_key(self.k, pub_key)
ssl.EC_POINT_free(pub_key)
ssl.BN_CTX_free(ctx)
return self.k
def set_privkey(self, key):
self.mb = ctypes.create_string_buffer(key)
return ssl.d2i_ECPrivateKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key))
def set_pubkey(self, key):
self.mb = ctypes.create_string_buffer(key)
return ssl.o2i_ECPublicKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key))
def get_privkey(self):
size = ssl.i2d_ECPrivateKey(self.k, 0)
mb_pri = ctypes.create_string_buffer(size)
ssl.i2d_ECPrivateKey(self.k, ctypes.byref(ctypes.pointer(mb_pri)))
return mb_pri.raw
def get_pubkey(self):
size = ssl.i2o_ECPublicKey(self.k, 0)
mb = ctypes.create_string_buffer(size)
ssl.i2o_ECPublicKey(self.k, ctypes.byref(ctypes.pointer(mb)))
return mb.raw
def get_raw_ecdh_key(self, other_pubkey):
ecdh_keybuffer = ctypes.create_string_buffer(32)
r = ssl.ECDH_compute_key(ctypes.pointer(ecdh_keybuffer), 32,
ssl.EC_KEY_get0_public_key(other_pubkey.k),
self.k, 0)
if r != 32:
raise Exception('CKey.get_ecdh_key(): ECDH_compute_key() failed')
return ecdh_keybuffer.raw
def get_ecdh_key(self, other_pubkey, kdf=lambda k: hashlib.sha256(k).digest()):
# FIXME: be warned it's not clear what the kdf should be as a default
r = self.get_raw_ecdh_key(other_pubkey)
return kdf(r)
def sign(self, hash, low_s = True):
# FIXME: need unit tests for below cases
if not isinstance(hash, bytes):
raise TypeError('Hash must be bytes instance; got %r' % hash.__class__)
if len(hash) != 32:
raise ValueError('Hash must be exactly 32 bytes long')
sig_size0 = ctypes.c_uint32()
sig_size0.value = ssl.ECDSA_size(self.k)
mb_sig = ctypes.create_string_buffer(sig_size0.value)
result = ssl.ECDSA_sign(0, hash, len(hash), mb_sig, ctypes.byref(sig_size0), self.k)
assert 1 == result
assert mb_sig.raw[0] == 0x30
assert mb_sig.raw[1] == sig_size0.value - 2
total_size = mb_sig.raw[1]
assert mb_sig.raw[2] == 2
r_size = mb_sig.raw[3]
assert mb_sig.raw[4 + r_size] == 2
s_size = mb_sig.raw[5 + r_size]
s_value = int.from_bytes(mb_sig.raw[6+r_size:6+r_size+s_size], byteorder='big')
if (not low_s) or s_value <= SECP256K1_ORDER_HALF:
return mb_sig.raw[:sig_size0.value]
def set(self, data):
"""Construct a public key from a serialization in compressed or uncompressed format"""
if (len(data) == 65 and data[0] == 0x04):
p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1)
self.valid = SECP256K1.on_curve(p)
if self.valid:
self.p = p
self.compressed = False
elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)):
x = int.from_bytes(data[1:33], 'big')
if SECP256K1.is_x_coord(x):
p = SECP256K1.lift_x(x)
# if the oddness of the y co-ord isn't correct, find the other
# valid y
if (p[1] & 1) != (data[0] & 1):
p = SECP256K1.negate(p)
self.p = p
self.valid = True
self.compressed = True
else:
low_s_value = SECP256K1_ORDER - s_value
low_s_bytes = (low_s_value).to_bytes(33, byteorder='big')
while len(low_s_bytes) > 1 and low_s_bytes[0] == 0 and low_s_bytes[1] < 0x80:
low_s_bytes = low_s_bytes[1:]
new_s_size = len(low_s_bytes)
new_total_size_byte = (total_size + new_s_size - s_size).to_bytes(1,byteorder='big')
new_s_size_byte = (new_s_size).to_bytes(1,byteorder='big')
return b'\x30' + new_total_size_byte + mb_sig.raw[2:5+r_size] + new_s_size_byte + low_s_bytes
def verify(self, hash, sig):
"""Verify a DER signature"""
return ssl.ECDSA_verify(0, hash, len(hash), sig, len(sig), self.k) == 1
class CPubKey(bytes):
"""An encapsulated public key
Attributes:
is_valid - Corresponds to CPubKey.IsValid()
is_fullyvalid - Corresponds to CPubKey.IsFullyValid()
is_compressed - Corresponds to CPubKey.IsCompressed()
"""
def __new__(cls, buf, _cec_key=None):
self = super(CPubKey, cls).__new__(cls, buf)
if _cec_key is None:
_cec_key = CECKey()
self._cec_key = _cec_key
self.is_fullyvalid = _cec_key.set_pubkey(self) != 0
return self
@property
def is_valid(self):
return len(self) > 0
self.valid = False
else:
self.valid = False
@property
def is_compressed(self):
return len(self) == 33
return self.compressed
def verify(self, hash, sig):
return self._cec_key.verify(hash, sig)
@property
def is_valid(self):
return self.valid
def __str__(self):
return repr(self)
def get_bytes(self):
assert(self.valid)
p = SECP256K1.affine(self.p)
if p is None:
return None
if self.compressed:
return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big')
else:
return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big')
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, super(CPubKey, self).__repr__())
def verify_ecdsa(self, sig, msg, low_s=True):
"""Verify a strictly DER-encoded ECDSA signature against this pubkey.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA verifier algorithm"""
assert(self.valid)
# Extract r and s from the DER formatted signature. Return false for
# any DER encoding errors.
if (sig[1] + 2 != len(sig)):
return False
if (len(sig) < 4):
return False
if (sig[0] != 0x30):
return False
if (sig[2] != 0x02):
return False
rlen = sig[3]
if (len(sig) < 6 + rlen):
return False
if rlen < 1 or rlen > 33:
return False
if sig[4] >= 0x80:
return False
if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
return False
r = int.from_bytes(sig[4:4+rlen], 'big')
if (sig[4+rlen] != 0x02):
return False
slen = sig[5+rlen]
if slen < 1 or slen > 33:
return False
if (len(sig) != 6 + rlen + slen):
return False
if sig[6+rlen] >= 0x80:
return False
if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
return False
s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')
# Verify that r and s are within the group order
if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER:
return False
if low_s and s >= SECP256K1_ORDER_HALF:
return False
z = int.from_bytes(msg, 'big')
# Run verifier algorithm on r, s
w = modinv(s, SECP256K1_ORDER)
u1 = z*w % SECP256K1_ORDER
u2 = r*w % SECP256K1_ORDER
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)]))
if R is None or R[0] != r:
return False
return True
class ECKey():
"""A secp256k1 private key"""
def __init__(self):
self.valid = False
def set(self, secret, compressed):
"""Construct a private key object with given 32-byte secret and compressed flag."""
assert(len(secret) == 32)
secret = int.from_bytes(secret, 'big')
self.valid = (secret > 0 and secret < SECP256K1_ORDER)
if self.valid:
self.secret = secret
self.compressed = compressed
def generate(self, compressed=True):
"""Generate a random private key (compressed or uncompressed)."""
self.set(random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big'), compressed)
def get_bytes(self):
"""Retrieve the 32-byte representation of this key."""
assert(self.valid)
return self.secret.to_bytes(32, 'big')
@property
def is_valid(self):
return self.valid
@property
def is_compressed(self):
return self.compressed
def get_pubkey(self):
"""Compute an ECPubKey object for this secret key."""
assert(self.valid)
ret = ECPubKey()
p = SECP256K1.mul([(SECP256K1_G, self.secret)])
ret.p = p
ret.valid = True
ret.compressed = self.compressed
return ret
def sign_ecdsa(self, msg, low_s=True):
"""Construct a DER-encoded ECDSA signature with this key.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA signer algorithm."""
assert(self.valid)
z = int.from_bytes(msg, 'big')
# Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation)
k = random.randrange(1, SECP256K1_ORDER)
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)]))
r = R[0] % SECP256K1_ORDER
s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER
if low_s and s > SECP256K1_ORDER_HALF:
s = SECP256K1_ORDER - s
# Represent in DER format. The byte representations of r and s have
# length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33
# bytes).
rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb