mirror of
https://github.com/dashpay/dash.git
synced 2024-12-26 20:42:59 +01:00
0b7d7a084a
* net: Use Intra-Quorum Relay connections for other messages too Make intra-quorum data delivery more robust. * Apply review suggestions
4167 lines
136 KiB
C++
4167 lines
136 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2015 The Bitcoin Core developers
|
|
// Copyright (c) 2014-2020 The Dash Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include <config/dash-config.h>
|
|
#endif
|
|
|
|
#include <net.h>
|
|
#include <netmessagemaker.h>
|
|
|
|
#include <chainparams.h>
|
|
#include <clientversion.h>
|
|
#include <consensus/consensus.h>
|
|
#include <crypto/common.h>
|
|
#include <crypto/sha256.h>
|
|
#include <primitives/transaction.h>
|
|
#include <netbase.h>
|
|
#include <scheduler.h>
|
|
#include <ui_interface.h>
|
|
#include <utilstrencodings.h>
|
|
#include <validation.h>
|
|
|
|
#include <masternode/masternode-meta.h>
|
|
#include <masternode/masternode-sync.h>
|
|
#include <coinjoin/coinjoin.h>
|
|
#include <evo/deterministicmns.h>
|
|
|
|
#include <statsd_client.h>
|
|
|
|
#ifdef WIN32
|
|
#include <string.h>
|
|
#else
|
|
#include <fcntl.h>
|
|
#endif
|
|
|
|
#ifdef USE_POLL
|
|
#include <poll.h>
|
|
#endif
|
|
|
|
#ifdef USE_EPOLL
|
|
#include <sys/epoll.h>
|
|
#endif
|
|
|
|
#ifdef USE_KQUEUE
|
|
#include <sys/event.h>
|
|
#endif
|
|
|
|
#ifdef USE_UPNP
|
|
#include <miniupnpc/miniupnpc.h>
|
|
#include <miniupnpc/miniwget.h>
|
|
#include <miniupnpc/upnpcommands.h>
|
|
#include <miniupnpc/upnperrors.h>
|
|
#endif
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <math.h>
|
|
|
|
// Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
|
|
#define DUMP_ADDRESSES_INTERVAL 900
|
|
|
|
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
|
|
#define FEELER_SLEEP_WINDOW 1
|
|
|
|
// MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define it as 0
|
|
#if !defined(MSG_NOSIGNAL)
|
|
#define MSG_NOSIGNAL 0
|
|
#endif
|
|
|
|
// MSG_DONTWAIT is not available on some platforms, if it doesn't exist define it as 0
|
|
#if !defined(MSG_DONTWAIT)
|
|
#define MSG_DONTWAIT 0
|
|
#endif
|
|
|
|
// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
|
|
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
|
|
#ifdef WIN32
|
|
#ifndef PROTECTION_LEVEL_UNRESTRICTED
|
|
#define PROTECTION_LEVEL_UNRESTRICTED 10
|
|
#endif
|
|
#ifndef IPV6_PROTECTION_LEVEL
|
|
#define IPV6_PROTECTION_LEVEL 23
|
|
#endif
|
|
#endif
|
|
|
|
/** Used to pass flags to the Bind() function */
|
|
enum BindFlags {
|
|
BF_NONE = 0,
|
|
BF_EXPLICIT = (1U << 0),
|
|
BF_REPORT_ERROR = (1U << 1),
|
|
BF_WHITELIST = (1U << 2),
|
|
};
|
|
|
|
#ifndef USE_WAKEUP_PIPE
|
|
// The set of sockets cannot be modified while waiting
|
|
// The sleep time needs to be small to avoid new sockets stalling
|
|
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
|
|
#else
|
|
// select() is woken up through the wakeup pipe whenever a new node is added, so we can wait much longer.
|
|
// We are however still somewhat limited in how long we can sleep as there is periodic work (cleanup) to be done in
|
|
// the socket handler thread
|
|
static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 500;
|
|
#endif
|
|
|
|
const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
|
|
|
|
constexpr const CConnman::CFullyConnectedOnly CConnman::FullyConnectedOnly;
|
|
constexpr const CConnman::CAllNodes CConnman::AllNodes;
|
|
|
|
static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
|
|
static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
|
|
//
|
|
// Global state variables
|
|
//
|
|
bool fDiscover = true;
|
|
bool fListen = true;
|
|
bool fRelayTxes = true;
|
|
CCriticalSection cs_mapLocalHost;
|
|
std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
|
|
static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
|
|
std::string strSubVersion;
|
|
|
|
void CConnman::AddOneShot(const std::string& strDest)
|
|
{
|
|
LOCK(cs_vOneShots);
|
|
vOneShots.push_back(strDest);
|
|
}
|
|
|
|
unsigned short GetListenPort()
|
|
{
|
|
return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort()));
|
|
}
|
|
|
|
// find 'best' local address for a particular peer
|
|
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
|
|
{
|
|
if (!fListen)
|
|
return false;
|
|
|
|
int nBestScore = -1;
|
|
int nBestReachability = -1;
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
for (const auto& entry : mapLocalHost)
|
|
{
|
|
int nScore = entry.second.nScore;
|
|
int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
|
|
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
|
|
{
|
|
addr = CService(entry.first, entry.second.nPort);
|
|
nBestReachability = nReachability;
|
|
nBestScore = nScore;
|
|
}
|
|
}
|
|
}
|
|
return nBestScore >= 0;
|
|
}
|
|
|
|
//! Convert the pnSeed6 array into usable address objects.
|
|
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
|
|
{
|
|
// It'll only connect to one or two seed nodes because once it connects,
|
|
// it'll get a pile of addresses with newer timestamps.
|
|
// Seed nodes are given a random 'last seen time' of between one and two
|
|
// weeks ago.
|
|
const int64_t nOneWeek = 7*24*60*60;
|
|
std::vector<CAddress> vSeedsOut;
|
|
vSeedsOut.reserve(vSeedsIn.size());
|
|
for (const auto& seed_in : vSeedsIn) {
|
|
struct in6_addr ip;
|
|
memcpy(&ip, seed_in.addr, sizeof(ip));
|
|
CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE));
|
|
addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;
|
|
vSeedsOut.push_back(addr);
|
|
}
|
|
return vSeedsOut;
|
|
}
|
|
|
|
// get best local address for a particular peer as a CAddress
|
|
// Otherwise, return the unroutable 0.0.0.0 but filled in with
|
|
// the normal parameters, since the IP may be changed to a useful
|
|
// one by discovery.
|
|
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
|
|
{
|
|
CAddress ret(CService(CNetAddr(),GetListenPort()), nLocalServices);
|
|
CService addr;
|
|
if (GetLocal(addr, paddrPeer))
|
|
{
|
|
ret = CAddress(addr, nLocalServices);
|
|
}
|
|
ret.nTime = GetAdjustedTime();
|
|
return ret;
|
|
}
|
|
|
|
int GetnScore(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
if (mapLocalHost.count(addr) == LOCAL_NONE)
|
|
return 0;
|
|
return mapLocalHost[addr].nScore;
|
|
}
|
|
|
|
// Is our peer's addrLocal potentially useful as an external IP source?
|
|
bool IsPeerAddrLocalGood(CNode *pnode)
|
|
{
|
|
CService addrLocal = pnode->GetAddrLocal();
|
|
return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
|
|
!IsLimited(addrLocal.GetNetwork());
|
|
}
|
|
|
|
// pushes our own address to a peer
|
|
void AdvertiseLocal(CNode *pnode)
|
|
{
|
|
if (fListen && pnode->fSuccessfullyConnected)
|
|
{
|
|
CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
|
|
if (gArgs.GetBoolArg("-addrmantest", false)) {
|
|
// use IPv4 loopback during addrmantest
|
|
addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices());
|
|
}
|
|
// If discovery is enabled, sometimes give our peer the address it
|
|
// tells us that it sees us as in case it has a better idea of our
|
|
// address than we do.
|
|
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
|
|
GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0))
|
|
{
|
|
addrLocal.SetIP(pnode->GetAddrLocal());
|
|
}
|
|
if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false))
|
|
{
|
|
LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
|
|
FastRandomContext insecure_rand;
|
|
pnode->PushAddress(addrLocal, insecure_rand);
|
|
}
|
|
}
|
|
}
|
|
|
|
// learn a new local address
|
|
bool AddLocal(const CService& addr, int nScore)
|
|
{
|
|
if (!addr.IsRoutable() && Params().RequireRoutableExternalIP())
|
|
return false;
|
|
|
|
if (!fDiscover && nScore < LOCAL_MANUAL)
|
|
return false;
|
|
|
|
if (IsLimited(addr))
|
|
return false;
|
|
|
|
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
|
|
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
bool fAlready = mapLocalHost.count(addr) > 0;
|
|
LocalServiceInfo &info = mapLocalHost[addr];
|
|
if (!fAlready || nScore >= info.nScore) {
|
|
info.nScore = nScore + (fAlready ? 1 : 0);
|
|
info.nPort = addr.GetPort();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AddLocal(const CNetAddr &addr, int nScore)
|
|
{
|
|
return AddLocal(CService(addr, GetListenPort()), nScore);
|
|
}
|
|
|
|
bool RemoveLocal(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
|
|
mapLocalHost.erase(addr);
|
|
return true;
|
|
}
|
|
|
|
/** Make a particular network entirely off-limits (no automatic connects to it) */
|
|
void SetLimited(enum Network net, bool fLimited)
|
|
{
|
|
if (net == NET_UNROUTABLE || net == NET_INTERNAL)
|
|
return;
|
|
LOCK(cs_mapLocalHost);
|
|
vfLimited[net] = fLimited;
|
|
}
|
|
|
|
bool IsLimited(enum Network net)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return vfLimited[net];
|
|
}
|
|
|
|
bool IsLimited(const CNetAddr &addr)
|
|
{
|
|
return IsLimited(addr.GetNetwork());
|
|
}
|
|
|
|
/** vote for a local address */
|
|
bool SeenLocal(const CService& addr)
|
|
{
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
if (mapLocalHost.count(addr) == 0)
|
|
return false;
|
|
mapLocalHost[addr].nScore++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/** check whether a given address is potentially local */
|
|
bool IsLocal(const CService& addr)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return mapLocalHost.count(addr) > 0;
|
|
}
|
|
|
|
/** check whether a given network is one we can probably connect to */
|
|
bool IsReachable(enum Network net)
|
|
{
|
|
LOCK(cs_mapLocalHost);
|
|
return !vfLimited[net];
|
|
}
|
|
|
|
/** check whether a given address is in a network we can probably connect to */
|
|
bool IsReachable(const CNetAddr& addr)
|
|
{
|
|
enum Network net = addr.GetNetwork();
|
|
return IsReachable(net);
|
|
}
|
|
|
|
|
|
CNode* CConnman::FindNode(const CNetAddr& ip, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (static_cast<CNetAddr>(pnode->addr) == ip) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CSubNet& subNet, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const std::string& addrName, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (pnode->GetAddrName() == addrName) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
CNode* CConnman::FindNode(const CService& addr, bool fExcludeDisconnecting)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (fExcludeDisconnecting && pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (static_cast<CService>(pnode->addr) == addr) {
|
|
return pnode;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool CConnman::CheckIncomingNonce(uint64_t nonce)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/** Get the bind address for a socket as CAddress */
|
|
static CAddress GetBindAddress(SOCKET sock)
|
|
{
|
|
CAddress addr_bind;
|
|
struct sockaddr_storage sockaddr_bind;
|
|
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
|
|
if (sock != INVALID_SOCKET) {
|
|
if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
|
|
addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Warning: getsockname failed\n");
|
|
}
|
|
}
|
|
return addr_bind;
|
|
}
|
|
|
|
CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection)
|
|
{
|
|
if (pszDest == nullptr) {
|
|
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
|
|
if (!fAllowLocal && IsLocal(addrConnect)) {
|
|
return nullptr;
|
|
}
|
|
|
|
// Look for an existing connection
|
|
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
|
|
if (pnode)
|
|
{
|
|
LogPrintf("Failed to open new connection, already connected\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// debug print
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
|
|
pszDest ? pszDest : addrConnect.ToString(),
|
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
|
|
} else {
|
|
LogPrint(BCLog::NET, "trying connection lastseen=%.1fhrs\n",
|
|
pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
|
|
}
|
|
|
|
// Resolve
|
|
const int default_port = Params().GetDefaultPort();
|
|
if (pszDest) {
|
|
std::vector<CService> resolved;
|
|
if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) {
|
|
addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
|
|
if (!addrConnect.IsValid()) {
|
|
LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest);
|
|
return nullptr;
|
|
}
|
|
// It is possible that we already have a connection to the IP/port pszDest resolved to.
|
|
// In that case, drop the connection that was just created, and return the existing CNode instead.
|
|
// Also store the name we used to connect in that CNode, so that future FindNode() calls to that
|
|
// name catch this early.
|
|
LOCK(cs_vNodes);
|
|
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
|
|
if (pnode)
|
|
{
|
|
pnode->MaybeSetAddrName(std::string(pszDest));
|
|
LogPrintf("Failed to open new connection, already connected\n");
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Connect
|
|
bool connected = false;
|
|
SOCKET hSocket = INVALID_SOCKET;
|
|
proxyType proxy;
|
|
if (addrConnect.IsValid()) {
|
|
bool proxyConnectionFailed = false;
|
|
|
|
if (GetProxy(addrConnect.GetNetwork(), proxy)) {
|
|
hSocket = CreateSocket(proxy.proxy);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return nullptr;
|
|
}
|
|
connected = ConnectThroughProxy(proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, &proxyConnectionFailed);
|
|
} else {
|
|
// no proxy needed (none set for target network)
|
|
hSocket = CreateSocket(addrConnect);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return nullptr;
|
|
}
|
|
connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout, manual_connection);
|
|
}
|
|
if (!proxyConnectionFailed) {
|
|
// If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
|
|
// the proxy, mark this as an attempt.
|
|
addrman.Attempt(addrConnect, fCountFailure);
|
|
}
|
|
} else if (pszDest && GetNameProxy(proxy)) {
|
|
hSocket = CreateSocket(proxy.proxy);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return nullptr;
|
|
}
|
|
std::string host;
|
|
int port = default_port;
|
|
SplitHostPort(std::string(pszDest), port, host);
|
|
connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, nullptr);
|
|
}
|
|
if (!connected) {
|
|
CloseSocket(hSocket);
|
|
return nullptr;
|
|
}
|
|
|
|
// Add node
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
CAddress addr_bind = GetBindAddress(hSocket);
|
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false);
|
|
pnode->AddRef();
|
|
statsClient.inc("peers.connect", 1.0f);
|
|
|
|
return pnode;
|
|
}
|
|
|
|
void CConnman::DumpBanlist()
|
|
{
|
|
SweepBanned(); // clean unused entries (if bantime has expired)
|
|
|
|
if (!BannedSetIsDirty())
|
|
return;
|
|
|
|
int64_t nStart = GetTimeMillis();
|
|
|
|
CBanDB bandb;
|
|
banmap_t banmap;
|
|
GetBanned(banmap);
|
|
if (bandb.Write(banmap)) {
|
|
SetBannedSetDirty(false);
|
|
}
|
|
|
|
LogPrint(BCLog::NET, "Flushed %d banned node ips/subnets to banlist.dat %dms\n",
|
|
banmap.size(), GetTimeMillis() - nStart);
|
|
}
|
|
|
|
void CNode::CloseSocketDisconnect(CConnman* connman)
|
|
{
|
|
AssertLockHeld(connman->cs_vNodes);
|
|
|
|
fDisconnect = true;
|
|
LOCK(cs_hSocket);
|
|
if (hSocket == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
fHasRecvData = false;
|
|
fCanSendData = false;
|
|
|
|
connman->mapSocketToNode.erase(hSocket);
|
|
connman->mapReceivableNodes.erase(GetId());
|
|
connman->mapSendableNodes.erase(GetId());
|
|
{
|
|
LOCK(connman->cs_mapNodesWithDataToSend);
|
|
if (connman->mapNodesWithDataToSend.erase(GetId()) != 0) {
|
|
// See comment in PushMessage
|
|
Release();
|
|
}
|
|
}
|
|
|
|
connman->UnregisterEvents(this);
|
|
|
|
LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
|
|
CloseSocket(hSocket);
|
|
statsClient.inc("peers.disconnect", 1.0f);
|
|
}
|
|
|
|
void CConnman::ClearBanned()
|
|
{
|
|
{
|
|
LOCK(cs_setBanned);
|
|
setBanned.clear();
|
|
setBannedIsDirty = true;
|
|
}
|
|
DumpBanlist(); //store banlist to disk
|
|
if(clientInterface)
|
|
clientInterface->BannedListChanged();
|
|
}
|
|
|
|
bool CConnman::IsBanned(CNetAddr ip)
|
|
{
|
|
LOCK(cs_setBanned);
|
|
for (const auto& it : setBanned) {
|
|
CSubNet subNet = it.first;
|
|
CBanEntry banEntry = it.second;
|
|
|
|
if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::IsBanned(CSubNet subnet)
|
|
{
|
|
LOCK(cs_setBanned);
|
|
banmap_t::iterator i = setBanned.find(subnet);
|
|
if (i != setBanned.end())
|
|
{
|
|
CBanEntry banEntry = (*i).second;
|
|
if (GetTime() < banEntry.nBanUntil) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
|
|
CSubNet subNet(addr);
|
|
Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
|
|
}
|
|
|
|
void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
|
|
CBanEntry banEntry(GetTime());
|
|
banEntry.banReason = banReason;
|
|
if (bantimeoffset <= 0)
|
|
{
|
|
bantimeoffset = gArgs.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
|
|
sinceUnixEpoch = false;
|
|
}
|
|
banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset;
|
|
|
|
{
|
|
LOCK(cs_setBanned);
|
|
if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
|
|
setBanned[subNet] = banEntry;
|
|
setBannedIsDirty = true;
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
if(clientInterface)
|
|
clientInterface->BannedListChanged();
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (subNet.Match(static_cast<CNetAddr>(pnode->addr)))
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
if(banReason == BanReasonManuallyAdded)
|
|
DumpBanlist(); //store banlist to disk immediately if user requested ban
|
|
}
|
|
|
|
bool CConnman::Unban(const CNetAddr &addr) {
|
|
CSubNet subNet(addr);
|
|
return Unban(subNet);
|
|
}
|
|
|
|
bool CConnman::Unban(const CSubNet &subNet) {
|
|
{
|
|
LOCK(cs_setBanned);
|
|
if (!setBanned.erase(subNet))
|
|
return false;
|
|
setBannedIsDirty = true;
|
|
}
|
|
if(clientInterface)
|
|
clientInterface->BannedListChanged();
|
|
DumpBanlist(); //store banlist to disk immediately
|
|
return true;
|
|
}
|
|
|
|
void CConnman::GetBanned(banmap_t &banMap)
|
|
{
|
|
LOCK(cs_setBanned);
|
|
// Sweep the banlist so expired bans are not returned
|
|
SweepBanned();
|
|
banMap = setBanned; //create a thread safe copy
|
|
}
|
|
|
|
void CConnman::SetBanned(const banmap_t &banMap)
|
|
{
|
|
LOCK(cs_setBanned);
|
|
setBanned = banMap;
|
|
setBannedIsDirty = true;
|
|
}
|
|
|
|
void CConnman::SweepBanned()
|
|
{
|
|
int64_t now = GetTime();
|
|
bool notifyUI = false;
|
|
{
|
|
LOCK(cs_setBanned);
|
|
banmap_t::iterator it = setBanned.begin();
|
|
while(it != setBanned.end())
|
|
{
|
|
CSubNet subNet = (*it).first;
|
|
CBanEntry banEntry = (*it).second;
|
|
if(now > banEntry.nBanUntil)
|
|
{
|
|
setBanned.erase(it++);
|
|
setBannedIsDirty = true;
|
|
notifyUI = true;
|
|
LogPrint(BCLog::NET, "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString());
|
|
}
|
|
else
|
|
++it;
|
|
}
|
|
}
|
|
// update UI
|
|
if(notifyUI && clientInterface) {
|
|
clientInterface->BannedListChanged();
|
|
}
|
|
}
|
|
|
|
bool CConnman::BannedSetIsDirty()
|
|
{
|
|
LOCK(cs_setBanned);
|
|
return setBannedIsDirty;
|
|
}
|
|
|
|
void CConnman::SetBannedSetDirty(bool dirty)
|
|
{
|
|
LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag
|
|
setBannedIsDirty = dirty;
|
|
}
|
|
|
|
|
|
bool CConnman::IsWhitelistedRange(const CNetAddr &addr) {
|
|
for (const CSubNet& subnet : vWhitelistedRange) {
|
|
if (subnet.Match(addr))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::string CNode::GetAddrName() const {
|
|
LOCK(cs_addrName);
|
|
return addrName;
|
|
}
|
|
|
|
void CNode::MaybeSetAddrName(const std::string& addrNameIn) {
|
|
LOCK(cs_addrName);
|
|
if (addrName.empty()) {
|
|
addrName = addrNameIn;
|
|
}
|
|
}
|
|
|
|
CService CNode::GetAddrLocal() const {
|
|
LOCK(cs_addrLocal);
|
|
return addrLocal;
|
|
}
|
|
|
|
void CNode::SetAddrLocal(const CService& addrLocalIn) {
|
|
LOCK(cs_addrLocal);
|
|
if (addrLocal.IsValid()) {
|
|
error("Addr local already set for node: %i. Refusing to change from %s to %s", id, addrLocal.ToString(), addrLocalIn.ToString());
|
|
} else {
|
|
addrLocal = addrLocalIn;
|
|
}
|
|
}
|
|
|
|
std::string CNode::GetLogString() const
|
|
{
|
|
return fLogIPs ? addr.ToString() : strprintf("%d", id);
|
|
}
|
|
|
|
#undef X
|
|
#define X(name) stats.name = name
|
|
void CNode::copyStats(CNodeStats &stats)
|
|
{
|
|
stats.nodeid = this->GetId();
|
|
X(nServices);
|
|
X(addr);
|
|
X(addrBind);
|
|
{
|
|
LOCK(cs_filter);
|
|
X(fRelayTxes);
|
|
}
|
|
X(nLastSend);
|
|
X(nLastRecv);
|
|
X(nTimeConnected);
|
|
X(nTimeOffset);
|
|
stats.addrName = GetAddrName();
|
|
X(nVersion);
|
|
{
|
|
LOCK(cs_SubVer);
|
|
X(cleanSubVer);
|
|
}
|
|
X(fInbound);
|
|
X(m_manual_connection);
|
|
X(nStartingHeight);
|
|
{
|
|
LOCK(cs_vSend);
|
|
X(mapSendBytesPerMsgCmd);
|
|
X(nSendBytes);
|
|
}
|
|
{
|
|
LOCK(cs_vRecv);
|
|
X(mapRecvBytesPerMsgCmd);
|
|
X(nRecvBytes);
|
|
}
|
|
X(fWhitelisted);
|
|
|
|
// It is common for nodes with good ping times to suddenly become lagged,
|
|
// due to a new block arriving or other large transfer.
|
|
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
|
|
// since pingtime does not update until the ping is complete, which might take a while.
|
|
// So, if a ping is taking an unusually long time in flight,
|
|
// the caller can immediately detect that this is happening.
|
|
int64_t nPingUsecWait = 0;
|
|
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
|
|
nPingUsecWait = GetTimeMicros() - nPingUsecStart;
|
|
}
|
|
|
|
// Raw ping time is in microseconds, but show it to user as whole seconds (Dash users should be well used to small numbers with many decimal places by now :)
|
|
stats.dPingTime = (((double)nPingUsecTime) / 1e6);
|
|
stats.dMinPing = (((double)nMinPingUsecTime) / 1e6);
|
|
stats.dPingWait = (((double)nPingUsecWait) / 1e6);
|
|
|
|
// Leave string empty if addrLocal invalid (not filled in yet)
|
|
CService addrLocalUnlocked = GetAddrLocal();
|
|
stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
|
|
|
|
{
|
|
LOCK(cs_mnauth);
|
|
X(verifiedProRegTxHash);
|
|
X(verifiedPubKeyHash);
|
|
}
|
|
X(m_masternode_connection);
|
|
}
|
|
#undef X
|
|
|
|
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
|
|
{
|
|
complete = false;
|
|
int64_t nTimeMicros = GetTimeMicros();
|
|
LOCK(cs_vRecv);
|
|
nLastRecv = nTimeMicros / 1000000;
|
|
nRecvBytes += nBytes;
|
|
while (nBytes > 0) {
|
|
|
|
// get current incomplete message, or create a new one
|
|
if (vRecvMsg.empty() ||
|
|
vRecvMsg.back().complete())
|
|
vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, INIT_PROTO_VERSION));
|
|
|
|
CNetMessage& msg = vRecvMsg.back();
|
|
|
|
// absorb network data
|
|
int handled;
|
|
if (!msg.in_data) {
|
|
handled = msg.readHeader(pch, nBytes);
|
|
} else {
|
|
handled = msg.readData(pch, nBytes);
|
|
}
|
|
|
|
if (handled < 0)
|
|
return false;
|
|
|
|
if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
|
|
LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId());
|
|
return false;
|
|
}
|
|
|
|
pch += handled;
|
|
nBytes -= handled;
|
|
|
|
if (msg.complete()) {
|
|
|
|
//store received bytes per message command
|
|
//to prevent a memory DOS, only allow valid commands
|
|
mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand);
|
|
if (i == mapRecvBytesPerMsgCmd.end())
|
|
i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
|
|
assert(i != mapRecvBytesPerMsgCmd.end());
|
|
i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
statsClient.count("bandwidth.message." + std::string(msg.hdr.pchCommand) + ".bytesReceived", msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE, 1.0f);
|
|
|
|
msg.nTime = nTimeMicros;
|
|
complete = true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void CNode::SetSendVersion(int nVersionIn)
|
|
{
|
|
// Send version may only be changed in the version message, and
|
|
// only one version message is allowed per session. We can therefore
|
|
// treat this value as const and even atomic as long as it's only used
|
|
// once a version message has been successfully processed. Any attempt to
|
|
// set this twice is an error.
|
|
if (nSendVersion != 0) {
|
|
error("Send version already set for node: %i. Refusing to change from %i to %i", id, nSendVersion, nVersionIn);
|
|
} else {
|
|
nSendVersion = nVersionIn;
|
|
}
|
|
}
|
|
|
|
int CNode::GetSendVersion() const
|
|
{
|
|
// The send version should always be explicitly set to
|
|
// INIT_PROTO_VERSION rather than using this value until SetSendVersion
|
|
// has been called.
|
|
if (nSendVersion == 0) {
|
|
error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION);
|
|
return INIT_PROTO_VERSION;
|
|
}
|
|
return nSendVersion;
|
|
}
|
|
|
|
|
|
int CNetMessage::readHeader(const char *pch, unsigned int nBytes)
|
|
{
|
|
// copy data to temporary parsing buffer
|
|
unsigned int nRemaining = 24 - nHdrPos;
|
|
unsigned int nCopy = std::min(nRemaining, nBytes);
|
|
|
|
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
|
|
nHdrPos += nCopy;
|
|
|
|
// if header incomplete, exit
|
|
if (nHdrPos < 24)
|
|
return nCopy;
|
|
|
|
// deserialize to CMessageHeader
|
|
try {
|
|
hdrbuf >> hdr;
|
|
}
|
|
catch (const std::exception&) {
|
|
return -1;
|
|
}
|
|
|
|
// reject messages larger than MAX_SIZE
|
|
if (hdr.nMessageSize > MAX_SIZE)
|
|
return -1;
|
|
|
|
// switch state to reading message data
|
|
in_data = true;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
int CNetMessage::readData(const char *pch, unsigned int nBytes)
|
|
{
|
|
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
|
|
unsigned int nCopy = std::min(nRemaining, nBytes);
|
|
|
|
if (vRecv.size() < nDataPos + nCopy) {
|
|
// Allocate up to 256 KiB ahead, but never more than the total message size.
|
|
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
|
|
}
|
|
|
|
hasher.Write((const unsigned char*)pch, nCopy);
|
|
memcpy(&vRecv[nDataPos], pch, nCopy);
|
|
nDataPos += nCopy;
|
|
|
|
return nCopy;
|
|
}
|
|
|
|
const uint256& CNetMessage::GetMessageHash() const
|
|
{
|
|
assert(complete());
|
|
if (data_hash.IsNull())
|
|
hasher.Finalize(data_hash.begin());
|
|
return data_hash;
|
|
}
|
|
|
|
size_t CConnman::SocketSendData(CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend)
|
|
{
|
|
auto it = pnode->vSendMsg.begin();
|
|
size_t nSentSize = 0;
|
|
|
|
while (it != pnode->vSendMsg.end()) {
|
|
const auto &data = *it;
|
|
assert(data.size() > pnode->nSendOffset);
|
|
int nBytes = 0;
|
|
{
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
break;
|
|
nBytes = send(pnode->hSocket, reinterpret_cast<const char*>(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
|
|
}
|
|
if (nBytes > 0) {
|
|
pnode->nLastSend = GetSystemTimeInSeconds();
|
|
pnode->nSendBytes += nBytes;
|
|
pnode->nSendOffset += nBytes;
|
|
nSentSize += nBytes;
|
|
if (pnode->nSendOffset == data.size()) {
|
|
pnode->nSendOffset = 0;
|
|
pnode->nSendSize -= data.size();
|
|
pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
|
|
it++;
|
|
} else {
|
|
// could not send full message; stop sending more
|
|
pnode->fCanSendData = false;
|
|
break;
|
|
}
|
|
} else {
|
|
if (nBytes < 0) {
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
LogPrintf("socket send error %s (peer=%d)\n", NetworkErrorString(nErr), pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
// couldn't send anything at all
|
|
pnode->fCanSendData = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (it == pnode->vSendMsg.end()) {
|
|
assert(pnode->nSendOffset == 0);
|
|
assert(pnode->nSendSize == 0);
|
|
}
|
|
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
|
|
pnode->nSendMsgSize = pnode->vSendMsg.size();
|
|
return nSentSize;
|
|
}
|
|
|
|
struct NodeEvictionCandidate
|
|
{
|
|
NodeId id;
|
|
int64_t nTimeConnected;
|
|
int64_t nMinPingUsecTime;
|
|
int64_t nLastBlockTime;
|
|
int64_t nLastTXTime;
|
|
bool fRelevantServices;
|
|
bool fRelayTxes;
|
|
bool fBloomFilter;
|
|
uint64_t nKeyedNetGroup;
|
|
};
|
|
|
|
static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
|
|
{
|
|
return a.nMinPingUsecTime > b.nMinPingUsecTime;
|
|
}
|
|
|
|
static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b)
|
|
{
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
|
|
return a.nKeyedNetGroup < b.nKeyedNetGroup;
|
|
}
|
|
|
|
static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
|
|
if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
|
|
if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
|
|
{
|
|
// There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
|
|
if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
|
|
if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
|
|
if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
|
|
return a.nTimeConnected > b.nTimeConnected;
|
|
}
|
|
|
|
|
|
//! Sort an array by the specified comparator, then erase the last K elements.
|
|
template<typename T, typename Comparator>
|
|
static void EraseLastKElements(std::vector<T> &elements, Comparator comparator, size_t k)
|
|
{
|
|
std::sort(elements.begin(), elements.end(), comparator);
|
|
size_t eraseSize = std::min(k, elements.size());
|
|
elements.erase(elements.end() - eraseSize, elements.end());
|
|
}
|
|
|
|
/** Try to find a connection to evict when the node is full.
|
|
* Extreme care must be taken to avoid opening the node to attacker
|
|
* triggered network partitioning.
|
|
* The strategy used here is to protect a small number of peers
|
|
* for each of several distinct characteristics which are difficult
|
|
* to forge. In order to partition a node the attacker must be
|
|
* simultaneously better at all of them than honest peers.
|
|
*/
|
|
bool CConnman::AttemptToEvictConnection()
|
|
{
|
|
std::vector<NodeEvictionCandidate> vEvictionCandidates;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
for (const CNode* node : vNodes) {
|
|
if (node->fWhitelisted)
|
|
continue;
|
|
if (!node->fInbound)
|
|
continue;
|
|
if (node->fDisconnect)
|
|
continue;
|
|
|
|
if (fMasternodeMode) {
|
|
// This handles eviction protected nodes. Nodes are always protected for a short time after the connection
|
|
// was accepted. This short time is meant for the VERSION/VERACK exchange and the possible MNAUTH that might
|
|
// follow when the incoming connection is from another masternode. When a message other than MNAUTH
|
|
// is received after VERSION/VERACK, the protection is lifted immediately.
|
|
bool isProtected = GetSystemTimeInSeconds() - node->nTimeConnected < INBOUND_EVICTION_PROTECTION_TIME;
|
|
if (node->nTimeFirstMessageReceived != 0 && !node->fFirstMessageIsMNAUTH) {
|
|
isProtected = false;
|
|
}
|
|
// if MNAUTH was valid, the node is always protected (and at the same time not accounted when
|
|
// checking incoming connection limits)
|
|
if (!node->verifiedProRegTxHash.IsNull()) {
|
|
isProtected = true;
|
|
}
|
|
if (isProtected) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
NodeEvictionCandidate candidate = {node->GetId(), node->nTimeConnected, node->nMinPingUsecTime,
|
|
node->nLastBlockTime, node->nLastTXTime,
|
|
HasAllDesirableServiceFlags(node->nServices),
|
|
node->fRelayTxes, node->pfilter != nullptr, node->nKeyedNetGroup};
|
|
vEvictionCandidates.push_back(candidate);
|
|
}
|
|
}
|
|
|
|
// Protect connections with certain characteristics
|
|
|
|
// Deterministically select 4 peers to protect by netgroup.
|
|
// An attacker cannot predict which netgroups will be protected
|
|
EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
|
|
// Protect the 8 nodes with the lowest minimum ping time.
|
|
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
|
|
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
|
|
// Protect 4 nodes that most recently sent us transactions.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
|
|
// Protect 4 nodes that most recently sent us blocks.
|
|
// An attacker cannot manipulate this metric without performing useful work.
|
|
EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
|
|
// Protect the half of the remaining nodes which have been connected the longest.
|
|
// This replicates the non-eviction implicit behavior, and precludes attacks that start later.
|
|
EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2);
|
|
|
|
if (vEvictionCandidates.empty()) return false;
|
|
|
|
// Identify the network group with the most connections and youngest member.
|
|
// (vEvictionCandidates is already sorted by reverse connect time)
|
|
uint64_t naMostConnections;
|
|
unsigned int nMostConnections = 0;
|
|
int64_t nMostConnectionsTime = 0;
|
|
std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
|
|
for (const NodeEvictionCandidate &node : vEvictionCandidates) {
|
|
std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup];
|
|
group.push_back(node);
|
|
int64_t grouptime = group[0].nTimeConnected;
|
|
|
|
if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) {
|
|
nMostConnections = group.size();
|
|
nMostConnectionsTime = grouptime;
|
|
naMostConnections = node.nKeyedNetGroup;
|
|
}
|
|
}
|
|
|
|
// Reduce to the network group with the most connections
|
|
vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
|
|
|
|
// Disconnect from the network group with the most connections
|
|
NodeId evicted = vEvictionCandidates.front().id;
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (pnode->GetId() == evicted) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
|
|
CAddress addr;
|
|
int nInbound = 0;
|
|
int nVerifiedInboundMasternodes = 0;
|
|
int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler);
|
|
|
|
if (hSocket != INVALID_SOCKET) {
|
|
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
|
|
LogPrintf("Warning: Unknown socket family\n");
|
|
}
|
|
}
|
|
|
|
bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr);
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (pnode->fInbound) {
|
|
nInbound++;
|
|
if (!pnode->verifiedProRegTxHash.IsNull()) {
|
|
nVerifiedInboundMasternodes++;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (hSocket == INVALID_SOCKET)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK)
|
|
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
|
|
return;
|
|
}
|
|
|
|
std::string strDropped;
|
|
if (fLogIPs) {
|
|
strDropped = strprintf("connection from %s dropped", addr.ToString());
|
|
} else {
|
|
strDropped = "connection dropped";
|
|
}
|
|
|
|
if (!fNetworkActive) {
|
|
LogPrintf("%s: not accepting new connections\n", strDropped);
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
if (!IsSelectableSocket(hSocket))
|
|
{
|
|
LogPrintf("%s: non-selectable socket\n", strDropped);
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
// According to the internet TCP_NODELAY is not carried into accepted sockets
|
|
// on all platforms. Set it again here just to be sure.
|
|
SetSocketNoDelay(hSocket);
|
|
|
|
if (IsBanned(addr) && !whitelisted)
|
|
{
|
|
LogPrint(BCLog::NET, "%s (banned)\n", strDropped);
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
// Evict connections until we are below nMaxInbound. In case eviction protection resulted in nodes to not be evicted
|
|
// before, they might get evicted in batches now (after the protection timeout).
|
|
// We don't evict verified MN connections and also don't take them into account when checking limits. We can do this
|
|
// because we know that such connections are naturally limited by the total number of MNs, so this is not usable
|
|
// for attacks.
|
|
while (nInbound - nVerifiedInboundMasternodes >= nMaxInbound)
|
|
{
|
|
if (!AttemptToEvictConnection()) {
|
|
// No connection to evict, disconnect the new connection
|
|
LogPrint(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
nInbound--;
|
|
}
|
|
|
|
// don't accept incoming connections until fully synced
|
|
if(fMasternodeMode && !masternodeSync.IsSynced()) {
|
|
LogPrint(BCLog::NET, "AcceptConnection -- masternode is not synced yet, skipping inbound connection attempt\n");
|
|
CloseSocket(hSocket);
|
|
return;
|
|
}
|
|
|
|
NodeId id = GetNewNodeId();
|
|
uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
|
|
CAddress addr_bind = GetBindAddress(hSocket);
|
|
|
|
CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true);
|
|
pnode->AddRef();
|
|
pnode->fWhitelisted = whitelisted;
|
|
m_msgproc->InitializeNode(pnode);
|
|
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET_NETCONN, "connection from %s accepted, sock=%d, peer=%d\n", addr.ToString(), pnode->hSocket, pnode->GetId());
|
|
} else {
|
|
LogPrint(BCLog::NET_NETCONN, "connection accepted, sock=%d, peer=%d\n", pnode->hSocket, pnode->GetId());
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodes.push_back(pnode);
|
|
mapSocketToNode.emplace(pnode->hSocket, pnode);
|
|
RegisterEvents(pnode);
|
|
WakeSelect();
|
|
}
|
|
}
|
|
|
|
void CConnman::DisconnectNodes()
|
|
{
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
if (!fNetworkActive) {
|
|
// Disconnect any connected nodes
|
|
for (CNode* pnode : vNodes) {
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Disconnect unused nodes
|
|
for (auto it = vNodes.begin(); it != vNodes.end(); )
|
|
{
|
|
CNode* pnode = *it;
|
|
if (pnode->fDisconnect)
|
|
{
|
|
// If we were the ones who initiated the disconnect, we must assume that the other side wants to see
|
|
// pending messages. If the other side initiated the disconnect (or disconnected after we've shutdown
|
|
// the socket), we can be pretty sure that they are not interested in any pending messages anymore and
|
|
// thus can immediately close the socket.
|
|
if (!pnode->fOtherSideDisconnected) {
|
|
if (pnode->nDisconnectLingerTime == 0) {
|
|
// let's not immediately close the socket but instead wait for at least 100ms so that there is a
|
|
// chance to flush all/some pending data. Otherwise the other side might not receive REJECT messages
|
|
// that were pushed right before setting fDisconnect=true
|
|
// Flushing must happen in two places to ensure data can be received by the other side:
|
|
// 1. vSendMsg must be empty and all messages sent via send(). This is ensured by SocketHandler()
|
|
// being called before DisconnectNodes and also by the linger time
|
|
// 2. Internal socket send buffers must be flushed. This is ensured solely by the linger time
|
|
pnode->nDisconnectLingerTime = GetTimeMillis() + 100;
|
|
}
|
|
if (GetTimeMillis() < pnode->nDisconnectLingerTime) {
|
|
// everything flushed to the kernel?
|
|
if (!pnode->fSocketShutdown && pnode->nSendMsgSize == 0) {
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket != INVALID_SOCKET) {
|
|
// Give the other side a chance to detect the disconnect as early as possible (recv() will return 0)
|
|
::shutdown(pnode->hSocket, SD_SEND);
|
|
}
|
|
pnode->fSocketShutdown = true;
|
|
}
|
|
++it;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (fLogIPs) {
|
|
LogPrintf("ThreadSocketHandler -- removing node: peer=%d addr=%s nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n",
|
|
pnode->GetId(), pnode->addr.ToString(), pnode->GetRefCount(), pnode->fInbound, pnode->m_masternode_connection, pnode->m_masternode_iqr_connection);
|
|
} else {
|
|
LogPrintf("ThreadSocketHandler -- removing node: peer=%d nRefCount=%d fInbound=%d m_masternode_connection=%d m_masternode_iqr_connection=%d\n",
|
|
pnode->GetId(), pnode->GetRefCount(), pnode->fInbound, pnode->m_masternode_connection, pnode->m_masternode_iqr_connection);
|
|
}
|
|
|
|
// remove from vNodes
|
|
it = vNodes.erase(it);
|
|
|
|
// release outbound grant (if any)
|
|
pnode->grantOutbound.Release();
|
|
|
|
// close socket and cleanup
|
|
pnode->CloseSocketDisconnect(this);
|
|
|
|
// hold in disconnected pool until all refs are released
|
|
pnode->Release();
|
|
vNodesDisconnected.push_back(pnode);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
{
|
|
// Delete disconnected nodes
|
|
std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
|
|
for (auto it = vNodesDisconnected.begin(); it != vNodesDisconnected.end(); )
|
|
{
|
|
CNode* pnode = *it;
|
|
// wait until threads are done using it
|
|
bool fDelete = false;
|
|
if (pnode->GetRefCount() <= 0) {
|
|
{
|
|
TRY_LOCK(pnode->cs_inventory, lockInv);
|
|
if (lockInv) {
|
|
TRY_LOCK(pnode->cs_vSend, lockSend);
|
|
if (lockSend) {
|
|
fDelete = true;
|
|
}
|
|
}
|
|
}
|
|
if (fDelete) {
|
|
it = vNodesDisconnected.erase(it);
|
|
DeleteNode(pnode);
|
|
}
|
|
}
|
|
if (!fDelete) {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::NotifyNumConnectionsChanged()
|
|
{
|
|
size_t vNodesSize;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodesSize = vNodes.size();
|
|
}
|
|
|
|
// If we had zero connections before and new connections now or if we just dropped
|
|
// to zero connections reset the sync process if its outdated.
|
|
if ((vNodesSize > 0 && nPrevNodeCount == 0) || (vNodesSize == 0 && nPrevNodeCount > 0)) {
|
|
masternodeSync.Reset();
|
|
}
|
|
|
|
if(vNodesSize != nPrevNodeCount) {
|
|
nPrevNodeCount = vNodesSize;
|
|
if(clientInterface)
|
|
clientInterface->NotifyNumConnectionsChanged(vNodesSize);
|
|
|
|
CalculateNumConnectionsChangedStats();
|
|
}
|
|
}
|
|
|
|
void CConnman::CalculateNumConnectionsChangedStats()
|
|
{
|
|
if (!gArgs.GetBoolArg("-statsenabled", DEFAULT_STATSD_ENABLE)) {
|
|
return;
|
|
}
|
|
|
|
// count various node attributes for statsD
|
|
int fullNodes = 0;
|
|
int spvNodes = 0;
|
|
int inboundNodes = 0;
|
|
int outboundNodes = 0;
|
|
int ipv4Nodes = 0;
|
|
int ipv6Nodes = 0;
|
|
int torNodes = 0;
|
|
mapMsgCmdSize mapRecvBytesMsgStats;
|
|
mapMsgCmdSize mapSentBytesMsgStats;
|
|
for (const std::string &msg : getAllNetMessageTypes()) {
|
|
mapRecvBytesMsgStats[msg] = 0;
|
|
mapSentBytesMsgStats[msg] = 0;
|
|
}
|
|
mapRecvBytesMsgStats[NET_MESSAGE_COMMAND_OTHER] = 0;
|
|
mapSentBytesMsgStats[NET_MESSAGE_COMMAND_OTHER] = 0;
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
for (const mapMsgCmdSize::value_type &i : pnode->mapRecvBytesPerMsgCmd)
|
|
mapRecvBytesMsgStats[i.first] += i.second;
|
|
for (const mapMsgCmdSize::value_type &i : pnode->mapSendBytesPerMsgCmd)
|
|
mapSentBytesMsgStats[i.first] += i.second;
|
|
if(pnode->fClient)
|
|
spvNodes++;
|
|
else
|
|
fullNodes++;
|
|
if(pnode->fInbound)
|
|
inboundNodes++;
|
|
else
|
|
outboundNodes++;
|
|
if(pnode->addr.IsIPv4())
|
|
ipv4Nodes++;
|
|
if(pnode->addr.IsIPv6())
|
|
ipv6Nodes++;
|
|
if(pnode->addr.IsTor())
|
|
torNodes++;
|
|
if(pnode->nPingUsecTime > 0)
|
|
statsClient.timing("peers.ping_us", pnode->nPingUsecTime, 1.0f);
|
|
}
|
|
for (const std::string &msg : getAllNetMessageTypes()) {
|
|
statsClient.gauge("bandwidth.message." + msg + ".totalBytesReceived", mapRecvBytesMsgStats[msg], 1.0f);
|
|
statsClient.gauge("bandwidth.message." + msg + ".totalBytesSent", mapSentBytesMsgStats[msg], 1.0f);
|
|
}
|
|
statsClient.gauge("peers.totalConnections", nPrevNodeCount, 1.0f);
|
|
statsClient.gauge("peers.spvNodeConnections", spvNodes, 1.0f);
|
|
statsClient.gauge("peers.fullNodeConnections", fullNodes, 1.0f);
|
|
statsClient.gauge("peers.inboundConnections", inboundNodes, 1.0f);
|
|
statsClient.gauge("peers.outboundConnections", outboundNodes, 1.0f);
|
|
statsClient.gauge("peers.ipv4Connections", ipv4Nodes, 1.0f);
|
|
statsClient.gauge("peers.ipv6Connections", ipv6Nodes, 1.0f);
|
|
statsClient.gauge("peers.torConnections", torNodes, 1.0f);
|
|
}
|
|
|
|
void CConnman::InactivityCheck(CNode *pnode)
|
|
{
|
|
int64_t nTime = GetSystemTimeInSeconds();
|
|
if (nTime - pnode->nTimeConnected > m_peer_connect_timeout)
|
|
{
|
|
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
|
|
{
|
|
LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d from %d\n", m_peer_connect_timeout, pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
|
|
{
|
|
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (nTime - pnode->nLastRecv > TIMEOUT_INTERVAL)
|
|
{
|
|
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
|
|
{
|
|
LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
|
|
pnode->fDisconnect = true;
|
|
}
|
|
else if (!pnode->fSuccessfullyConnected)
|
|
{
|
|
LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId());
|
|
pnode->fDisconnect = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set)
|
|
{
|
|
for (const ListenSocket& hListenSocket : vhListenSocket) {
|
|
recv_set.insert(hListenSocket.socket);
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes)
|
|
{
|
|
bool select_recv = !pnode->fHasRecvData;
|
|
bool select_send = !pnode->fCanSendData;
|
|
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
continue;
|
|
|
|
error_set.insert(pnode->hSocket);
|
|
if (select_send) {
|
|
send_set.insert(pnode->hSocket);
|
|
}
|
|
if (select_recv) {
|
|
recv_set.insert(pnode->hSocket);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_WAKEUP_PIPE
|
|
// We add a pipe to the read set so that the select() call can be woken up from the outside
|
|
// This is done when data is added to send buffers (vSendMsg) or when new peers are added
|
|
// This is currently only implemented for POSIX compliant systems. This means that Windows will fall back to
|
|
// timing out after 50ms and then trying to send. This is ok as we assume that heavy-load daemons are usually
|
|
// run on Linux and friends.
|
|
recv_set.insert(wakeupPipe[0]);
|
|
#endif
|
|
|
|
return !recv_set.empty() || !send_set.empty() || !error_set.empty();
|
|
}
|
|
|
|
#ifdef USE_KQUEUE
|
|
void CConnman::SocketEventsKqueue(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
|
|
{
|
|
const size_t maxEvents = 64;
|
|
struct kevent events[maxEvents];
|
|
|
|
struct timespec timeout;
|
|
timeout.tv_sec = fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS / 1000;
|
|
timeout.tv_nsec = (fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS % 1000) * 1000 * 1000;
|
|
|
|
wakeupSelectNeeded = true;
|
|
int n = kevent(kqueuefd, nullptr, 0, events, maxEvents, &timeout);
|
|
wakeupSelectNeeded = false;
|
|
if (n == -1) {
|
|
LogPrintf("kevent wait error\n");
|
|
} else if (n > 0) {
|
|
for (int i = 0; i < n; i++) {
|
|
auto& event = events[i];
|
|
if ((event.flags & EV_ERROR) || (event.flags & EV_EOF)) {
|
|
error_set.insert((SOCKET)event.ident);
|
|
continue;
|
|
}
|
|
|
|
if (event.filter == EVFILT_READ) {
|
|
recv_set.insert((SOCKET)event.ident);
|
|
}
|
|
|
|
if (event.filter == EVFILT_WRITE) {
|
|
send_set.insert((SOCKET)event.ident);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_EPOLL
|
|
void CConnman::SocketEventsEpoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
|
|
{
|
|
const size_t maxEvents = 64;
|
|
epoll_event events[maxEvents];
|
|
|
|
wakeupSelectNeeded = true;
|
|
int n = epoll_wait(epollfd, events, maxEvents, fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS);
|
|
wakeupSelectNeeded = false;
|
|
for (int i = 0; i < n; i++) {
|
|
auto& e = events[i];
|
|
if((e.events & EPOLLERR) || (e.events & EPOLLHUP)) {
|
|
error_set.insert((SOCKET)e.data.fd);
|
|
continue;
|
|
}
|
|
|
|
if (e.events & EPOLLIN) {
|
|
recv_set.insert((SOCKET)e.data.fd);
|
|
}
|
|
|
|
if (e.events & EPOLLOUT) {
|
|
send_set.insert((SOCKET)e.data.fd);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_POLL
|
|
void CConnman::SocketEventsPoll(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
|
|
{
|
|
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
|
|
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
|
|
if (!fOnlyPoll) interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
|
|
return;
|
|
}
|
|
|
|
std::unordered_map<SOCKET, struct pollfd> pollfds;
|
|
for (SOCKET socket_id : recv_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
pollfds[socket_id].events |= POLLIN;
|
|
}
|
|
|
|
for (SOCKET socket_id : send_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
pollfds[socket_id].events |= POLLOUT;
|
|
}
|
|
|
|
for (SOCKET socket_id : error_select_set) {
|
|
pollfds[socket_id].fd = socket_id;
|
|
// These flags are ignored, but we set them for clarity
|
|
pollfds[socket_id].events |= POLLERR|POLLHUP;
|
|
}
|
|
|
|
std::vector<struct pollfd> vpollfds;
|
|
vpollfds.reserve(pollfds.size());
|
|
for (auto it : pollfds) {
|
|
vpollfds.push_back(std::move(it.second));
|
|
}
|
|
|
|
wakeupSelectNeeded = true;
|
|
int r = poll(vpollfds.data(), vpollfds.size(), fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS);
|
|
wakeupSelectNeeded = false;
|
|
if (r < 0) {
|
|
return;
|
|
}
|
|
|
|
if (interruptNet) return;
|
|
|
|
for (struct pollfd pollfd_entry : vpollfds) {
|
|
if (pollfd_entry.revents & POLLIN) recv_set.insert(pollfd_entry.fd);
|
|
if (pollfd_entry.revents & POLLOUT) send_set.insert(pollfd_entry.fd);
|
|
if (pollfd_entry.revents & (POLLERR|POLLHUP)) error_set.insert(pollfd_entry.fd);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void CConnman::SocketEventsSelect(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
|
|
{
|
|
std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
|
|
if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) {
|
|
interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Find which sockets have data to receive
|
|
//
|
|
struct timeval timeout;
|
|
timeout.tv_sec = 0;
|
|
timeout.tv_usec = fOnlyPoll ? 0 : SELECT_TIMEOUT_MILLISECONDS * 1000; // frequency to poll pnode->vSend
|
|
|
|
fd_set fdsetRecv;
|
|
fd_set fdsetSend;
|
|
fd_set fdsetError;
|
|
FD_ZERO(&fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
SOCKET hSocketMax = 0;
|
|
|
|
for (SOCKET hSocket : recv_select_set) {
|
|
FD_SET(hSocket, &fdsetRecv);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
for (SOCKET hSocket : send_select_set) {
|
|
FD_SET(hSocket, &fdsetSend);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
for (SOCKET hSocket : error_select_set) {
|
|
FD_SET(hSocket, &fdsetError);
|
|
hSocketMax = std::max(hSocketMax, hSocket);
|
|
}
|
|
|
|
wakeupSelectNeeded = true;
|
|
int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
|
|
wakeupSelectNeeded = false;
|
|
if (interruptNet)
|
|
return;
|
|
|
|
if (nSelect == SOCKET_ERROR)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
|
|
for (unsigned int i = 0; i <= hSocketMax; i++)
|
|
FD_SET(i, &fdsetRecv);
|
|
FD_ZERO(&fdsetSend);
|
|
FD_ZERO(&fdsetError);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)))
|
|
return;
|
|
}
|
|
|
|
for (SOCKET hSocket : recv_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetRecv)) {
|
|
recv_set.insert(hSocket);
|
|
}
|
|
}
|
|
|
|
for (SOCKET hSocket : send_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetSend)) {
|
|
send_set.insert(hSocket);
|
|
}
|
|
}
|
|
|
|
for (SOCKET hSocket : error_select_set) {
|
|
if (FD_ISSET(hSocket, &fdsetError)) {
|
|
error_set.insert(hSocket);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set, bool fOnlyPoll)
|
|
{
|
|
switch (socketEventsMode) {
|
|
#ifdef USE_KQUEUE
|
|
case SOCKETEVENTS_KQUEUE:
|
|
SocketEventsKqueue(recv_set, send_set, error_set, fOnlyPoll);
|
|
break;
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
case SOCKETEVENTS_EPOLL:
|
|
SocketEventsEpoll(recv_set, send_set, error_set, fOnlyPoll);
|
|
break;
|
|
#endif
|
|
#ifdef USE_POLL
|
|
case SOCKETEVENTS_POLL:
|
|
SocketEventsPoll(recv_set, send_set, error_set, fOnlyPoll);
|
|
break;
|
|
#endif
|
|
case SOCKETEVENTS_SELECT:
|
|
SocketEventsSelect(recv_set, send_set, error_set, fOnlyPoll);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
}
|
|
}
|
|
|
|
void CConnman::SocketHandler()
|
|
{
|
|
bool fOnlyPoll = false;
|
|
{
|
|
// check if we have work to do and thus should avoid waiting for events
|
|
LOCK2(cs_vNodes, cs_mapNodesWithDataToSend);
|
|
if (!mapReceivableNodes.empty()) {
|
|
fOnlyPoll = true;
|
|
} else if (!mapSendableNodes.empty() && !mapNodesWithDataToSend.empty()) {
|
|
// we must check if at least one of the nodes with pending messages is also sendable, as otherwise a single
|
|
// node would be able to make the network thread busy with polling
|
|
for (auto& p : mapNodesWithDataToSend) {
|
|
if (mapSendableNodes.count(p.first)) {
|
|
fOnlyPoll = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::set<SOCKET> recv_set, send_set, error_set;
|
|
SocketEvents(recv_set, send_set, error_set, fOnlyPoll);
|
|
|
|
#ifdef USE_WAKEUP_PIPE
|
|
// drain the wakeup pipe
|
|
if (recv_set.count(wakeupPipe[0])) {
|
|
char buf[128];
|
|
while (true) {
|
|
int r = read(wakeupPipe[0], buf, sizeof(buf));
|
|
if (r <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (interruptNet) return;
|
|
|
|
//
|
|
// Accept new connections
|
|
//
|
|
for (const ListenSocket& hListenSocket : vhListenSocket)
|
|
{
|
|
if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0)
|
|
{
|
|
AcceptConnection(hListenSocket);
|
|
}
|
|
}
|
|
|
|
std::vector<CNode*> vErrorNodes;
|
|
std::vector<CNode*> vReceivableNodes;
|
|
std::vector<CNode*> vSendableNodes;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (auto hSocket : error_set) {
|
|
auto it = mapSocketToNode.find(hSocket);
|
|
if (it == mapSocketToNode.end()) {
|
|
continue;
|
|
}
|
|
it->second->AddRef();
|
|
vErrorNodes.emplace_back(it->second);
|
|
}
|
|
for (auto hSocket : recv_set) {
|
|
if (error_set.count(hSocket)) {
|
|
// no need to handle it twice
|
|
continue;
|
|
}
|
|
|
|
auto it = mapSocketToNode.find(hSocket);
|
|
if (it == mapSocketToNode.end()) {
|
|
continue;
|
|
}
|
|
|
|
auto jt = mapReceivableNodes.emplace(it->second->GetId(), it->second);
|
|
assert(jt.first->second == it->second);
|
|
it->second->fHasRecvData = true;
|
|
}
|
|
for (auto hSocket : send_set) {
|
|
auto it = mapSocketToNode.find(hSocket);
|
|
if (it == mapSocketToNode.end()) {
|
|
continue;
|
|
}
|
|
|
|
auto jt = mapSendableNodes.emplace(it->second->GetId(), it->second);
|
|
assert(jt.first->second == it->second);
|
|
it->second->fCanSendData = true;
|
|
}
|
|
|
|
// collect nodes that have a receivable socket
|
|
// also clean up mapReceivableNodes from nodes that were receivable in the last iteration but aren't anymore
|
|
vReceivableNodes.reserve(mapReceivableNodes.size());
|
|
for (auto it = mapReceivableNodes.begin(); it != mapReceivableNodes.end(); ) {
|
|
if (!it->second->fHasRecvData) {
|
|
it = mapReceivableNodes.erase(it);
|
|
} else {
|
|
// Implement the following logic:
|
|
// * If there is data to send, try sending data. As this only
|
|
// happens when optimistic write failed, we choose to first drain the
|
|
// write buffer in this case before receiving more. This avoids
|
|
// needlessly queueing received data, if the remote peer is not themselves
|
|
// receiving data. This means properly utilizing TCP flow control signalling.
|
|
// * Otherwise, if there is space left in the receive buffer (!fPauseRecv), try
|
|
// receiving data (which should succeed as the socket signalled as receivable).
|
|
if (!it->second->fPauseRecv && it->second->nSendMsgSize == 0 && !it->second->fDisconnect) {
|
|
it->second->AddRef();
|
|
vReceivableNodes.emplace_back(it->second);
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
|
|
// collect nodes that have data to send and have a socket with non-empty write buffers
|
|
// also clean up mapNodesWithDataToSend from nodes that had messages to send in the last iteration
|
|
// but don't have any in this iteration
|
|
LOCK(cs_mapNodesWithDataToSend);
|
|
vSendableNodes.reserve(mapNodesWithDataToSend.size());
|
|
for (auto it = mapNodesWithDataToSend.begin(); it != mapNodesWithDataToSend.end(); ) {
|
|
if (it->second->nSendMsgSize == 0) {
|
|
// See comment in PushMessage
|
|
it->second->Release();
|
|
it = mapNodesWithDataToSend.erase(it);
|
|
} else {
|
|
if (it->second->fCanSendData) {
|
|
it->second->AddRef();
|
|
vSendableNodes.emplace_back(it->second);
|
|
}
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (CNode* pnode : vErrorNodes)
|
|
{
|
|
if (interruptNet) {
|
|
break;
|
|
}
|
|
// let recv() return errors and then handle it
|
|
SocketRecvData(pnode);
|
|
}
|
|
|
|
for (CNode* pnode : vReceivableNodes)
|
|
{
|
|
if (interruptNet) {
|
|
break;
|
|
}
|
|
if (pnode->fPauseRecv) {
|
|
continue;
|
|
}
|
|
|
|
SocketRecvData(pnode);
|
|
}
|
|
|
|
for (CNode* pnode : vSendableNodes) {
|
|
if (interruptNet) {
|
|
break;
|
|
}
|
|
|
|
LOCK(pnode->cs_vSend);
|
|
size_t nBytes = SocketSendData(pnode);
|
|
if (nBytes) {
|
|
RecordBytesSent(nBytes);
|
|
}
|
|
}
|
|
|
|
ReleaseNodeVector(vErrorNodes);
|
|
ReleaseNodeVector(vReceivableNodes);
|
|
ReleaseNodeVector(vSendableNodes);
|
|
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
// remove nodes from mapSendableNodes, so that the next iteration knows that there is no work to do
|
|
// (even if there are pending messages to be sent)
|
|
for (auto it = mapSendableNodes.begin(); it != mapSendableNodes.end(); ) {
|
|
if (!it->second->fCanSendData) {
|
|
LogPrint(BCLog::NET, "%s -- remove mapSendableNodes, peer=%d\n", __func__, it->second->GetId());
|
|
it = mapSendableNodes.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t CConnman::SocketRecvData(CNode *pnode)
|
|
{
|
|
// typical socket buffer is 8K-64K
|
|
char pchBuf[0x10000];
|
|
int nBytes = 0;
|
|
{
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET)
|
|
return 0;
|
|
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
|
|
if (nBytes < (int)sizeof(pchBuf)) {
|
|
pnode->fHasRecvData = false;
|
|
}
|
|
}
|
|
if (nBytes > 0)
|
|
{
|
|
bool notify = false;
|
|
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify)) {
|
|
LOCK(cs_vNodes);
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
RecordBytesRecv(nBytes);
|
|
if (notify) {
|
|
size_t nSizeAdded = 0;
|
|
auto it(pnode->vRecvMsg.begin());
|
|
for (; it != pnode->vRecvMsg.end(); ++it) {
|
|
if (!it->complete())
|
|
break;
|
|
nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE;
|
|
}
|
|
{
|
|
LOCK(pnode->cs_vProcessMsg);
|
|
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
|
|
pnode->nProcessQueueSize += nSizeAdded;
|
|
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
|
|
}
|
|
WakeMessageHandler();
|
|
}
|
|
}
|
|
else if (nBytes == 0)
|
|
{
|
|
// socket closed gracefully
|
|
if (!pnode->fDisconnect) {
|
|
LogPrint(BCLog::NET, "socket closed\n");
|
|
}
|
|
LOCK(cs_vNodes);
|
|
pnode->fOtherSideDisconnected = true; // avoid lingering
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
else if (nBytes < 0)
|
|
{
|
|
// error
|
|
int nErr = WSAGetLastError();
|
|
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
|
|
{
|
|
if (!pnode->fDisconnect)
|
|
LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
|
|
LOCK(cs_vNodes);
|
|
pnode->fOtherSideDisconnected = true; // avoid lingering
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
}
|
|
if (nBytes < 0) {
|
|
return 0;
|
|
}
|
|
return (size_t)nBytes;
|
|
}
|
|
|
|
void CConnman::ThreadSocketHandler()
|
|
{
|
|
int64_t nLastCleanupNodes = 0;
|
|
|
|
while (!interruptNet)
|
|
{
|
|
// Handle sockets before we do the next round of disconnects. This allows us to flush send buffers one last time
|
|
// before actually closing sockets. Receiving is however skipped in case a peer is pending to be disconnected
|
|
SocketHandler();
|
|
if (GetTimeMillis() - nLastCleanupNodes > 1000) {
|
|
ForEachNode(AllNodes, [&](CNode* pnode) {
|
|
InactivityCheck(pnode);
|
|
});
|
|
nLastCleanupNodes = GetTimeMillis();
|
|
}
|
|
DisconnectNodes();
|
|
NotifyNumConnectionsChanged();
|
|
}
|
|
}
|
|
|
|
void CConnman::WakeMessageHandler()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutexMsgProc);
|
|
fMsgProcWake = true;
|
|
}
|
|
condMsgProc.notify_one();
|
|
}
|
|
|
|
void CConnman::WakeSelect()
|
|
{
|
|
#ifdef USE_WAKEUP_PIPE
|
|
if (wakeupPipe[1] == -1) {
|
|
return;
|
|
}
|
|
|
|
char buf{0};
|
|
if (write(wakeupPipe[1], &buf, sizeof(buf)) != 1) {
|
|
LogPrint(BCLog::NET, "write to wakeupPipe failed\n");
|
|
}
|
|
#endif
|
|
|
|
wakeupSelectNeeded = false;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef USE_UPNP
|
|
static CThreadInterrupt g_upnp_interrupt;
|
|
static std::thread g_upnp_thread;
|
|
void ThreadMapPort()
|
|
{
|
|
std::string port = strprintf("%u", GetListenPort());
|
|
const char * multicastif = nullptr;
|
|
const char * minissdpdpath = nullptr;
|
|
struct UPNPDev * devlist = nullptr;
|
|
char lanaddr[64];
|
|
|
|
#ifndef UPNPDISCOVER_SUCCESS
|
|
/* miniupnpc 1.5 */
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
|
|
#elif MINIUPNPC_API_VERSION < 14
|
|
/* miniupnpc 1.6 */
|
|
int error = 0;
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
|
|
#else
|
|
/* miniupnpc 1.9.20150730 */
|
|
int error = 0;
|
|
devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
|
|
#endif
|
|
|
|
struct UPNPUrls urls;
|
|
struct IGDdatas data;
|
|
int r;
|
|
|
|
r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
|
|
if (r == 1)
|
|
{
|
|
if (fDiscover) {
|
|
char externalIPAddress[40];
|
|
r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
|
|
if(r != UPNPCOMMAND_SUCCESS)
|
|
LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
|
|
else
|
|
{
|
|
if(externalIPAddress[0])
|
|
{
|
|
CNetAddr resolved;
|
|
if(LookupHost(externalIPAddress, resolved, false)) {
|
|
LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str());
|
|
AddLocal(resolved, LOCAL_UPNP);
|
|
}
|
|
}
|
|
else
|
|
LogPrintf("UPnP: GetExternalIPAddress failed.\n");
|
|
}
|
|
}
|
|
|
|
std::string strDesc = "Dash Core " + FormatFullVersion();
|
|
|
|
do {
|
|
#ifndef UPNPDISCOVER_SUCCESS
|
|
/* miniupnpc 1.5 */
|
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
|
|
port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0);
|
|
#else
|
|
/* miniupnpc 1.6 */
|
|
r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
|
|
port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
|
|
#endif
|
|
|
|
if(r!=UPNPCOMMAND_SUCCESS)
|
|
LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
|
|
port, port, lanaddr, r, strupnperror(r));
|
|
else
|
|
LogPrintf("UPnP Port Mapping successful.\n");
|
|
}
|
|
while(g_upnp_interrupt.sleep_for(std::chrono::minutes(20)));
|
|
|
|
r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
|
|
LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
|
|
freeUPNPDevlist(devlist); devlist = nullptr;
|
|
FreeUPNPUrls(&urls);
|
|
} else {
|
|
LogPrintf("No valid UPnP IGDs found\n");
|
|
freeUPNPDevlist(devlist); devlist = nullptr;
|
|
if (r != 0)
|
|
FreeUPNPUrls(&urls);
|
|
}
|
|
}
|
|
|
|
void StartMapPort()
|
|
{
|
|
if (!g_upnp_thread.joinable()) {
|
|
assert(!g_upnp_interrupt);
|
|
g_upnp_thread = std::thread((std::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)));
|
|
}
|
|
}
|
|
|
|
void InterruptMapPort()
|
|
{
|
|
if(g_upnp_thread.joinable()) {
|
|
g_upnp_interrupt();
|
|
}
|
|
}
|
|
|
|
void StopMapPort()
|
|
{
|
|
if(g_upnp_thread.joinable()) {
|
|
g_upnp_thread.join();
|
|
g_upnp_interrupt.reset();
|
|
}
|
|
}
|
|
|
|
#else
|
|
void StartMapPort()
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
void InterruptMapPort()
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
void StopMapPort()
|
|
{
|
|
// Intentionally left blank.
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CConnman::ThreadDNSAddressSeed()
|
|
{
|
|
// goal: only query DNS seeds if address need is acute
|
|
// Avoiding DNS seeds when we don't need them improves user privacy by
|
|
// creating fewer identifying DNS requests, reduces trust by giving seeds
|
|
// less influence on the network topology, and reduces traffic to the seeds.
|
|
if ((addrman.size() > 0) &&
|
|
(!gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(11)))
|
|
return;
|
|
|
|
LOCK(cs_vNodes);
|
|
int nRelevant = 0;
|
|
for (auto pnode : vNodes) {
|
|
nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound && !pnode->m_masternode_probe_connection;
|
|
}
|
|
if (nRelevant >= 2) {
|
|
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
const std::vector<std::string> &vSeeds = Params().DNSSeeds();
|
|
int found = 0;
|
|
|
|
LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
|
|
|
|
for (const std::string &seed : vSeeds) {
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
if (HaveNameProxy()) {
|
|
AddOneShot(seed);
|
|
} else {
|
|
std::vector<CNetAddr> vIPs;
|
|
std::vector<CAddress> vAdd;
|
|
ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE);
|
|
std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
|
|
CNetAddr resolveSource;
|
|
if (!resolveSource.SetInternal(host)) {
|
|
continue;
|
|
}
|
|
unsigned int nMaxIPs = 256; // Limits number of IPs learned from a DNS seed
|
|
if (LookupHost(host.c_str(), vIPs, nMaxIPs, true))
|
|
{
|
|
for (const CNetAddr& ip : vIPs)
|
|
{
|
|
int nOneDay = 24*3600;
|
|
CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
|
|
addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old
|
|
vAdd.push_back(addr);
|
|
found++;
|
|
}
|
|
addrman.Add(vAdd, resolveSource);
|
|
} else {
|
|
// We now avoid directly using results from DNS Seeds which do not support service bit filtering,
|
|
// instead using them as a oneshot to get nodes with our desired service bits.
|
|
AddOneShot(seed);
|
|
}
|
|
}
|
|
}
|
|
|
|
LogPrintf("%d addresses found from DNS seeds\n", found);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CConnman::DumpAddresses()
|
|
{
|
|
int64_t nStart = GetTimeMillis();
|
|
|
|
CAddrDB adb;
|
|
adb.Write(addrman);
|
|
|
|
LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
|
|
addrman.size(), GetTimeMillis() - nStart);
|
|
}
|
|
|
|
void CConnman::DumpData()
|
|
{
|
|
DumpAddresses();
|
|
DumpBanlist();
|
|
}
|
|
|
|
void CConnman::ProcessOneShot()
|
|
{
|
|
std::string strDest;
|
|
{
|
|
LOCK(cs_vOneShots);
|
|
if (vOneShots.empty())
|
|
return;
|
|
strDest = vOneShots.front();
|
|
vOneShots.pop_front();
|
|
}
|
|
CAddress addr;
|
|
CSemaphoreGrant grant(*semOutbound, true);
|
|
if (grant) {
|
|
OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true);
|
|
}
|
|
}
|
|
|
|
bool CConnman::GetTryNewOutboundPeer()
|
|
{
|
|
return m_try_another_outbound_peer;
|
|
}
|
|
|
|
void CConnman::SetTryNewOutboundPeer(bool flag)
|
|
{
|
|
m_try_another_outbound_peer = flag;
|
|
LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false");
|
|
}
|
|
|
|
// Return the number of peers we have over our outbound connection limit
|
|
// Exclude peers that are marked for disconnect, or are going to be
|
|
// disconnected soon (eg one-shots and feelers)
|
|
// Also exclude peers that haven't finished initial connection handshake yet
|
|
// (so that we don't decide we're over our desired connection limit, and then
|
|
// evict some peer that has finished the handshake)
|
|
int CConnman::GetExtraOutboundCount()
|
|
{
|
|
int nOutbound = 0;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
// don't count outbound masternodes
|
|
if (pnode->m_masternode_connection) {
|
|
continue;
|
|
}
|
|
if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected && !pnode->m_masternode_probe_connection) {
|
|
++nOutbound;
|
|
}
|
|
}
|
|
}
|
|
return std::max(nOutbound - nMaxOutbound, 0);
|
|
}
|
|
|
|
void CConnman::ThreadOpenConnections(const std::vector<std::string> connect)
|
|
{
|
|
// Connect to specific addresses
|
|
if (!connect.empty())
|
|
{
|
|
for (int64_t nLoop = 0;; nLoop++)
|
|
{
|
|
ProcessOneShot();
|
|
for (const std::string& strAddr : connect)
|
|
{
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true);
|
|
for (int i = 0; i < 10 && i < nLoop; i++)
|
|
{
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Initiate network connections
|
|
int64_t nStart = GetTime();
|
|
|
|
// Minimum time before next feeler connection (in microseconds).
|
|
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
|
|
while (!interruptNet)
|
|
{
|
|
ProcessOneShot();
|
|
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
|
|
CSemaphoreGrant grant(*semOutbound);
|
|
if (interruptNet)
|
|
return;
|
|
|
|
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
|
|
if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
|
|
static bool done = false;
|
|
if (!done) {
|
|
LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
|
|
CNetAddr local;
|
|
local.SetInternal("fixedseeds");
|
|
addrman.Add(convertSeed6(Params().FixedSeeds()), local);
|
|
done = true;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Choose an address to connect to based on most recently seen
|
|
//
|
|
CAddress addrConnect;
|
|
|
|
// Only connect out to one peer per network group (/16 for IPv4).
|
|
// This is only done for mainnet and testnet
|
|
int nOutbound = 0;
|
|
std::set<std::vector<unsigned char> > setConnected;
|
|
if (!Params().AllowMultipleAddressesFromGroup()) {
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (!pnode->fInbound && !pnode->m_masternode_connection && !pnode->m_manual_connection) {
|
|
// Netgroups for inbound and addnode peers are not excluded because our goal here
|
|
// is to not use multiple of our limited outbound slots on a single netgroup
|
|
// but inbound and addnode peers do not use our outbound slots. Inbound peers
|
|
// also have the added issue that they're attacker controlled and could be used
|
|
// to prevent us from connecting to particular hosts if we used them here.
|
|
setConnected.insert(pnode->addr.GetGroup());
|
|
nOutbound++;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::set<uint256> setConnectedMasternodes;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (CNode* pnode : vNodes) {
|
|
if (!pnode->verifiedProRegTxHash.IsNull()) {
|
|
setConnectedMasternodes.emplace(pnode->verifiedProRegTxHash);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Feeler Connections
|
|
//
|
|
// Design goals:
|
|
// * Increase the number of connectable addresses in the tried table.
|
|
//
|
|
// Method:
|
|
// * Choose a random address from new and attempt to connect to it if we can connect
|
|
// successfully it is added to tried.
|
|
// * Start attempting feeler connections only after node finishes making outbound
|
|
// connections.
|
|
// * Only make a feeler connection once every few minutes.
|
|
//
|
|
bool fFeeler = false;
|
|
|
|
if (nOutbound >= nMaxOutbound && !GetTryNewOutboundPeer()) {
|
|
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
|
|
if (nTime > nNextFeeler) {
|
|
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
|
|
fFeeler = true;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
addrman.ResolveCollisions();
|
|
|
|
auto mnList = deterministicMNManager->GetListAtChainTip();
|
|
|
|
int64_t nANow = GetAdjustedTime();
|
|
int nTries = 0;
|
|
while (!interruptNet)
|
|
{
|
|
CAddrInfo addr = addrman.SelectTriedCollision();
|
|
|
|
// SelectTriedCollision returns an invalid address if it is empty.
|
|
if (!fFeeler || !addr.IsValid()) {
|
|
addr = addrman.Select(fFeeler);
|
|
}
|
|
|
|
auto dmn = mnList.GetMNByService(addr);
|
|
bool isMasternode = dmn != nullptr;
|
|
|
|
// if we selected an invalid address, restart
|
|
if (!addr.IsValid() || setConnected.count(addr.GetGroup()))
|
|
break;
|
|
|
|
// don't try to connect to masternodes that we already have a connection to (most likely inbound)
|
|
if (isMasternode && setConnectedMasternodes.count(dmn->proTxHash))
|
|
break;
|
|
|
|
// if we selected a local address, restart (local addresses are allowed in regtest and devnet)
|
|
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
|
|
if (!fAllowLocal && IsLocal(addrConnect))
|
|
break;
|
|
|
|
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
|
|
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
|
|
// already-connected network ranges, ...) before trying new addrman addresses.
|
|
nTries++;
|
|
if (nTries > 100)
|
|
break;
|
|
|
|
if (IsLimited(addr))
|
|
continue;
|
|
|
|
// only consider very recently tried nodes after 30 failed attempts
|
|
if (nANow - addr.nLastTry < 600 && nTries < 30)
|
|
continue;
|
|
|
|
// for non-feelers, require all the services we'll want,
|
|
// for feelers, only require they be a full node (only because most
|
|
// SPV clients don't have a good address DB available)
|
|
if (!isMasternode && !fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
|
|
continue;
|
|
} else if (!isMasternode && fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
|
|
continue;
|
|
}
|
|
|
|
// do not allow non-default ports, unless after 50 invalid addresses selected already
|
|
if ((!isMasternode || !Params().AllowMultiplePorts()) && addr.GetPort() != Params().GetDefaultPort() && addr.GetPort() != GetListenPort() && nTries < 50)
|
|
continue;
|
|
|
|
addrConnect = addr;
|
|
break;
|
|
}
|
|
|
|
if (addrConnect.IsValid()) {
|
|
|
|
if (fFeeler) {
|
|
// Add small amount of random noise before connection to avoid synchronization.
|
|
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(randsleep)))
|
|
return;
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString());
|
|
} else {
|
|
LogPrint(BCLog::NET, "Making feeler connection\n");
|
|
}
|
|
}
|
|
|
|
OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
|
|
{
|
|
std::vector<AddedNodeInfo> ret;
|
|
|
|
std::list<std::string> lAddresses(0);
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
ret.reserve(vAddedNodes.size());
|
|
std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses));
|
|
}
|
|
|
|
|
|
// Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
|
|
std::map<CService, bool> mapConnected;
|
|
std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const CNode* pnode : vNodes) {
|
|
if (pnode->addr.IsValid()) {
|
|
mapConnected[pnode->addr] = pnode->fInbound;
|
|
}
|
|
std::string addrName = pnode->GetAddrName();
|
|
if (!addrName.empty()) {
|
|
mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr));
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const std::string& strAddNode : lAddresses) {
|
|
CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort()));
|
|
AddedNodeInfo addedNode{strAddNode, CService(), false, false};
|
|
if (service.IsValid()) {
|
|
// strAddNode is an IP:port
|
|
auto it = mapConnected.find(service);
|
|
if (it != mapConnected.end()) {
|
|
addedNode.resolvedAddress = service;
|
|
addedNode.fConnected = true;
|
|
addedNode.fInbound = it->second;
|
|
}
|
|
} else {
|
|
// strAddNode is a name
|
|
auto it = mapConnectedByName.find(strAddNode);
|
|
if (it != mapConnectedByName.end()) {
|
|
addedNode.resolvedAddress = it->second.second;
|
|
addedNode.fConnected = true;
|
|
addedNode.fInbound = it->second.first;
|
|
}
|
|
}
|
|
ret.emplace_back(std::move(addedNode));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void CConnman::ThreadOpenAddedConnections()
|
|
{
|
|
while (true)
|
|
{
|
|
CSemaphoreGrant grant(*semAddnode);
|
|
std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
|
|
bool tried = false;
|
|
for (const AddedNodeInfo& info : vInfo) {
|
|
if (!info.fConnected) {
|
|
if (!grant.TryAcquire()) {
|
|
// If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
|
|
// the addednodeinfo state might change.
|
|
break;
|
|
}
|
|
tried = true;
|
|
CAddress addr(CService(), NODE_NONE);
|
|
OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true);
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
|
|
return;
|
|
}
|
|
}
|
|
// Retry every 60 seconds if a connection was attempted, otherwise two seconds
|
|
if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
void CConnman::ThreadOpenMasternodeConnections()
|
|
{
|
|
// Connecting to specific addresses, no masternode connections available
|
|
if (gArgs.IsArgSet("-connect") && gArgs.GetArgs("-connect").size() > 0)
|
|
return;
|
|
|
|
auto& chainParams = Params();
|
|
|
|
bool didConnect = false;
|
|
while (!interruptNet)
|
|
{
|
|
int sleepTime = 1000;
|
|
if (didConnect) {
|
|
sleepTime = 100;
|
|
}
|
|
if (!interruptNet.sleep_for(std::chrono::milliseconds(sleepTime)))
|
|
return;
|
|
|
|
didConnect = false;
|
|
|
|
if (!fNetworkActive || !masternodeSync.IsBlockchainSynced())
|
|
continue;
|
|
|
|
std::set<CService> connectedNodes;
|
|
std::map<uint256, bool> connectedProRegTxHashes;
|
|
ForEachNode([&](const CNode* pnode) {
|
|
connectedNodes.emplace(pnode->addr);
|
|
if (!pnode->verifiedProRegTxHash.IsNull()) {
|
|
connectedProRegTxHashes.emplace(pnode->verifiedProRegTxHash, pnode->fInbound);
|
|
}
|
|
});
|
|
|
|
auto mnList = deterministicMNManager->GetListAtChainTip();
|
|
|
|
if (interruptNet)
|
|
return;
|
|
|
|
int64_t nANow = GetAdjustedTime();
|
|
|
|
// NOTE: Process only one pending masternode at a time
|
|
|
|
CDeterministicMNCPtr connectToDmn;
|
|
bool isProbe = false;
|
|
{ // don't hold lock while calling OpenMasternodeConnection as cs_main is locked deep inside
|
|
LOCK2(cs_vNodes, cs_vPendingMasternodes);
|
|
|
|
if (!vPendingMasternodes.empty()) {
|
|
auto dmn = mnList.GetValidMN(vPendingMasternodes.front());
|
|
vPendingMasternodes.erase(vPendingMasternodes.begin());
|
|
if (dmn && !connectedNodes.count(dmn->pdmnState->addr) && !IsMasternodeOrDisconnectRequested(dmn->pdmnState->addr)) {
|
|
connectToDmn = dmn;
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening pending masternode connection to %s, service=%s\n", __func__, dmn->proTxHash.ToString(), dmn->pdmnState->addr.ToString(false));
|
|
}
|
|
}
|
|
|
|
if (!connectToDmn) {
|
|
std::vector<CDeterministicMNCPtr> pending;
|
|
for (const auto& group : masternodeQuorumNodes) {
|
|
for (const auto& proRegTxHash : group.second) {
|
|
auto dmn = mnList.GetMN(proRegTxHash);
|
|
if (!dmn) {
|
|
continue;
|
|
}
|
|
const auto& addr2 = dmn->pdmnState->addr;
|
|
if (!connectedNodes.count(addr2) && !IsMasternodeOrDisconnectRequested(addr2) && !connectedProRegTxHashes.count(proRegTxHash)) {
|
|
int64_t lastAttempt = mmetaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt();
|
|
// back off trying connecting to an address if we already tried recently
|
|
if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) {
|
|
continue;
|
|
}
|
|
pending.emplace_back(dmn);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!pending.empty()) {
|
|
connectToDmn = pending[GetRandInt(pending.size())];
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- opening quorum connection to %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false));
|
|
}
|
|
}
|
|
|
|
if (!connectToDmn) {
|
|
std::vector<CDeterministicMNCPtr> pending;
|
|
for (auto it = masternodePendingProbes.begin(); it != masternodePendingProbes.end(); ) {
|
|
auto dmn = mnList.GetMN(*it);
|
|
if (!dmn) {
|
|
it = masternodePendingProbes.erase(it);
|
|
continue;
|
|
}
|
|
bool connectedAndOutbound = connectedProRegTxHashes.count(dmn->proTxHash) && !connectedProRegTxHashes[dmn->proTxHash];
|
|
if (connectedAndOutbound) {
|
|
// we already have an outbound connection to this MN so there is no theed to probe it again
|
|
mmetaman.GetMetaInfo(dmn->proTxHash)->SetLastOutboundSuccess(nANow);
|
|
it = masternodePendingProbes.erase(it);
|
|
continue;
|
|
}
|
|
|
|
++it;
|
|
|
|
int64_t lastAttempt = mmetaman.GetMetaInfo(dmn->proTxHash)->GetLastOutboundAttempt();
|
|
// back off trying connecting to an address if we already tried recently
|
|
if (nANow - lastAttempt < chainParams.LLMQConnectionRetryTimeout()) {
|
|
continue;
|
|
}
|
|
pending.emplace_back(dmn);
|
|
}
|
|
|
|
if (!pending.empty()) {
|
|
connectToDmn = pending[GetRandInt(pending.size())];
|
|
masternodePendingProbes.erase(connectToDmn->proTxHash);
|
|
isProbe = true;
|
|
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- probing masternode %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!connectToDmn) {
|
|
continue;
|
|
}
|
|
|
|
didConnect = true;
|
|
|
|
mmetaman.GetMetaInfo(connectToDmn->proTxHash)->SetLastOutboundAttempt(nANow);
|
|
|
|
OpenMasternodeConnection(CAddress(connectToDmn->pdmnState->addr, NODE_NETWORK), isProbe);
|
|
// should be in the list now if connection was opened
|
|
bool connected = ForNode(connectToDmn->pdmnState->addr, CConnman::AllNodes, [&](CNode* pnode) {
|
|
if (pnode->fDisconnect) {
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
if (!connected) {
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connection failed for masternode %s, service=%s\n", __func__, connectToDmn->proTxHash.ToString(), connectToDmn->pdmnState->addr.ToString(false));
|
|
// reset last outbound success
|
|
mmetaman.GetMetaInfo(connectToDmn->proTxHash)->SetLastOutboundSuccess(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// if successful, this moves the passed grant to the constructed node
|
|
void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection, bool masternode_connection, bool masternode_probe_connection)
|
|
{
|
|
//
|
|
// Initiate outbound network connection
|
|
//
|
|
if (interruptNet) {
|
|
return;
|
|
}
|
|
if (!fNetworkActive) {
|
|
return;
|
|
}
|
|
if (!pszDest) {
|
|
// banned or exact match?
|
|
if (IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort()))
|
|
return;
|
|
// local and not a connection to itself?
|
|
bool fAllowLocal = Params().AllowMultiplePorts() && addrConnect.GetPort() != GetListenPort();
|
|
if (!fAllowLocal && IsLocal(addrConnect))
|
|
return;
|
|
// if multiple ports for same IP are allowed, search for IP:PORT match, otherwise search for IP-only match
|
|
if ((!Params().AllowMultiplePorts() && FindNode(static_cast<CNetAddr>(addrConnect))) ||
|
|
(Params().AllowMultiplePorts() && FindNode(static_cast<CService>(addrConnect))))
|
|
return;
|
|
} else if (FindNode(std::string(pszDest)))
|
|
return;
|
|
|
|
auto getIpStr = [&]() {
|
|
if (fLogIPs) {
|
|
return addrConnect.ToString(false);
|
|
} else {
|
|
return std::string("new peer");
|
|
}
|
|
};
|
|
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- connecting to %s\n", __func__, getIpStr());
|
|
CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection);
|
|
|
|
if (!pnode) {
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- ConnectNode failed for %s\n", __func__, getIpStr());
|
|
return;
|
|
}
|
|
LogPrint(BCLog::NET_NETCONN, "CConnman::%s -- succesfully connected to %s, sock=%d, peer=%d\n", __func__, getIpStr(), pnode->hSocket, pnode->GetId());
|
|
if (grantOutbound)
|
|
grantOutbound->MoveTo(pnode->grantOutbound);
|
|
if (fOneShot)
|
|
pnode->fOneShot = true;
|
|
if (fFeeler)
|
|
pnode->fFeeler = true;
|
|
if (manual_connection)
|
|
pnode->m_manual_connection = true;
|
|
if (masternode_connection)
|
|
pnode->m_masternode_connection = true;
|
|
if (masternode_probe_connection)
|
|
pnode->m_masternode_probe_connection = true;
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
mapSocketToNode.emplace(pnode->hSocket, pnode);
|
|
}
|
|
|
|
m_msgproc->InitializeNode(pnode);
|
|
{
|
|
LOCK(cs_vNodes);
|
|
vNodes.push_back(pnode);
|
|
RegisterEvents(pnode);
|
|
WakeSelect();
|
|
}
|
|
}
|
|
|
|
void CConnman::OpenMasternodeConnection(const CAddress &addrConnect, bool probe) {
|
|
OpenNetworkConnection(addrConnect, false, nullptr, nullptr, false, false, false, true, probe);
|
|
}
|
|
|
|
void CConnman::ThreadMessageHandler()
|
|
{
|
|
int64_t nLastSendMessagesTimeMasternodes = 0;
|
|
|
|
while (!flagInterruptMsgProc)
|
|
{
|
|
std::vector<CNode*> vNodesCopy = CopyNodeVector();
|
|
|
|
bool fMoreWork = false;
|
|
|
|
bool fSkipSendMessagesForMasternodes = true;
|
|
if (GetTimeMillis() - nLastSendMessagesTimeMasternodes >= 100) {
|
|
fSkipSendMessagesForMasternodes = false;
|
|
nLastSendMessagesTimeMasternodes = GetTimeMillis();
|
|
}
|
|
|
|
for (CNode* pnode : vNodesCopy)
|
|
{
|
|
if (pnode->fDisconnect)
|
|
continue;
|
|
|
|
// Receive messages
|
|
bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
|
|
fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
// Send messages
|
|
if (!fSkipSendMessagesForMasternodes || !pnode->m_masternode_connection) {
|
|
LOCK(pnode->cs_sendProcessing);
|
|
m_msgproc->SendMessages(pnode);
|
|
}
|
|
|
|
if (flagInterruptMsgProc)
|
|
return;
|
|
}
|
|
|
|
ReleaseNodeVector(vNodesCopy);
|
|
|
|
std::unique_lock<std::mutex> lock(mutexMsgProc);
|
|
if (!fMoreWork) {
|
|
condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; });
|
|
}
|
|
fMsgProcWake = false;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted)
|
|
{
|
|
strError = "";
|
|
int nOne = 1;
|
|
|
|
// Create socket for listening for incoming connections
|
|
struct sockaddr_storage sockaddr;
|
|
socklen_t len = sizeof(sockaddr);
|
|
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
|
|
{
|
|
strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
SOCKET hListenSocket = CreateSocket(addrBind);
|
|
if (hListenSocket == INVALID_SOCKET)
|
|
{
|
|
strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
return false;
|
|
}
|
|
|
|
// Allow binding if the port is still in TIME_WAIT state after
|
|
// the program was closed and restarted.
|
|
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int));
|
|
|
|
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
|
|
// and enable it by default or not. Try to enable it, if possible.
|
|
if (addrBind.IsIPv6()) {
|
|
#ifdef IPV6_V6ONLY
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int));
|
|
#endif
|
|
#ifdef WIN32
|
|
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
|
|
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
|
|
#endif
|
|
}
|
|
|
|
if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
|
|
{
|
|
int nErr = WSAGetLastError();
|
|
if (nErr == WSAEADDRINUSE)
|
|
strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME));
|
|
else
|
|
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
LogPrintf("Bound to %s\n", addrBind.ToString());
|
|
|
|
// Listen for incoming connections
|
|
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
|
|
{
|
|
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
|
|
struct kevent event;
|
|
EV_SET(&event, hListenSocket, EVFILT_READ, EV_ADD, 0, 0, nullptr);
|
|
if (kevent(kqueuefd, &event, 1, nullptr, 0, nullptr) != 0) {
|
|
strError = strprintf(_("Error: failed to add socket to kqueuefd (kevent returned error %s)"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
|
|
epoll_event event;
|
|
event.data.fd = hListenSocket;
|
|
event.events = EPOLLIN;
|
|
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, hListenSocket, &event) != 0) {
|
|
strError = strprintf(_("Error: failed to add socket to epollfd (epoll_ctl returned error %s)"), NetworkErrorString(WSAGetLastError()));
|
|
LogPrintf("%s\n", strError);
|
|
CloseSocket(hListenSocket);
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));
|
|
|
|
if (addrBind.IsRoutable() && fDiscover && !fWhitelisted)
|
|
AddLocal(addrBind, LOCAL_BIND);
|
|
|
|
return true;
|
|
}
|
|
|
|
void Discover()
|
|
{
|
|
if (!fDiscover)
|
|
return;
|
|
|
|
#ifdef WIN32
|
|
// Get local host IP
|
|
char pszHostName[256] = "";
|
|
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
|
|
{
|
|
std::vector<CNetAddr> vaddr;
|
|
if (LookupHost(pszHostName, vaddr, 0, true))
|
|
{
|
|
for (const CNetAddr &addr : vaddr)
|
|
{
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
// Get local host ip
|
|
struct ifaddrs* myaddrs;
|
|
if (getifaddrs(&myaddrs) == 0)
|
|
{
|
|
for (struct ifaddrs* ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next)
|
|
{
|
|
if (ifa->ifa_addr == nullptr) continue;
|
|
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
|
|
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
{
|
|
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
|
|
CNetAddr addr(s4->sin_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
else if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
{
|
|
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
|
|
CNetAddr addr(s6->sin6_addr);
|
|
if (AddLocal(addr, LOCAL_IF))
|
|
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
|
|
}
|
|
}
|
|
freeifaddrs(myaddrs);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CConnman::SetNetworkActive(bool active)
|
|
{
|
|
LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active);
|
|
|
|
if (fNetworkActive == active) {
|
|
return;
|
|
}
|
|
|
|
fNetworkActive = active;
|
|
|
|
// Always call the Reset() if the network gets enabled/disabled to make sure the sync process
|
|
// gets a reset if its outdated..
|
|
masternodeSync.Reset();
|
|
|
|
uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
|
|
}
|
|
|
|
CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) :
|
|
addrman(Params().AllowMultiplePorts()),
|
|
nSeed0(nSeed0In), nSeed1(nSeed1In)
|
|
{
|
|
fNetworkActive = true;
|
|
setBannedIsDirty = false;
|
|
fAddressesInitialized = false;
|
|
nLastNodeId = 0;
|
|
nPrevNodeCount = 0;
|
|
nSendBufferMaxSize = 0;
|
|
nReceiveFloodSize = 0;
|
|
flagInterruptMsgProc = false;
|
|
SetTryNewOutboundPeer(false);
|
|
|
|
Options connOptions;
|
|
Init(connOptions);
|
|
}
|
|
|
|
NodeId CConnman::GetNewNodeId()
|
|
{
|
|
return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
|
|
}
|
|
|
|
|
|
bool CConnman::Bind(const CService &addr, unsigned int flags) {
|
|
if (!(flags & BF_EXPLICIT) && IsLimited(addr))
|
|
return false;
|
|
std::string strError;
|
|
if (!BindListenPort(addr, strError, (flags & BF_WHITELIST) != 0)) {
|
|
if ((flags & BF_REPORT_ERROR) && clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::InitBinds(const std::vector<CService>& binds, const std::vector<CService>& whiteBinds) {
|
|
bool fBound = false;
|
|
for (const auto& addrBind : binds) {
|
|
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR));
|
|
}
|
|
for (const auto& addrBind : whiteBinds) {
|
|
fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR | BF_WHITELIST));
|
|
}
|
|
if (binds.empty() && whiteBinds.empty()) {
|
|
struct in_addr inaddr_any;
|
|
inaddr_any.s_addr = INADDR_ANY;
|
|
struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
|
|
fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE);
|
|
fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE);
|
|
}
|
|
return fBound;
|
|
}
|
|
|
|
bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
|
|
{
|
|
Init(connOptions);
|
|
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
nTotalBytesRecv = 0;
|
|
}
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nTotalBytesSent = 0;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
nMaxOutboundCycleStartTime = 0;
|
|
}
|
|
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
|
|
kqueuefd = kqueue();
|
|
if (kqueuefd == -1) {
|
|
LogPrintf("kqueue failed\n");
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
|
|
epollfd = epoll_create1(0);
|
|
if (epollfd == -1) {
|
|
LogPrintf("epoll_create1 failed\n");
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
|
|
if (clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(
|
|
_("Failed to listen on any port. Use -listen=0 if you want this."),
|
|
"", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
for (const auto& strDest : connOptions.vSeedNodes) {
|
|
AddOneShot(strDest);
|
|
}
|
|
|
|
if (clientInterface) {
|
|
clientInterface->InitMessage(_("Loading P2P addresses..."));
|
|
}
|
|
// Load addresses from peers.dat
|
|
int64_t nStart = GetTimeMillis();
|
|
{
|
|
CAddrDB adb;
|
|
if (adb.Read(addrman))
|
|
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
|
|
else {
|
|
addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
|
|
LogPrintf("Invalid or missing peers.dat; recreating\n");
|
|
DumpAddresses();
|
|
}
|
|
}
|
|
if (clientInterface)
|
|
clientInterface->InitMessage(_("Loading banlist..."));
|
|
// Load addresses from banlist.dat
|
|
nStart = GetTimeMillis();
|
|
CBanDB bandb;
|
|
banmap_t banmap;
|
|
if (bandb.Read(banmap)) {
|
|
SetBanned(banmap); // thread save setter
|
|
SetBannedSetDirty(false); // no need to write down, just read data
|
|
SweepBanned(); // sweep out unused entries
|
|
|
|
LogPrint(BCLog::NET, "Loaded %d banned node ips/subnets from banlist.dat %dms\n",
|
|
banmap.size(), GetTimeMillis() - nStart);
|
|
} else {
|
|
LogPrintf("Invalid or missing banlist.dat; recreating\n");
|
|
SetBannedSetDirty(true); // force write
|
|
DumpBanlist();
|
|
}
|
|
|
|
uiInterface.InitMessage(_("Starting network threads..."));
|
|
|
|
fAddressesInitialized = true;
|
|
|
|
if (semOutbound == nullptr) {
|
|
// initialize semaphore
|
|
semOutbound = MakeUnique<CSemaphore>(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections));
|
|
}
|
|
if (semAddnode == nullptr) {
|
|
// initialize semaphore
|
|
semAddnode = MakeUnique<CSemaphore>(nMaxAddnode);
|
|
}
|
|
|
|
//
|
|
// Start threads
|
|
//
|
|
assert(m_msgproc);
|
|
InterruptSocks5(false);
|
|
interruptNet.reset();
|
|
flagInterruptMsgProc = false;
|
|
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutexMsgProc);
|
|
fMsgProcWake = false;
|
|
}
|
|
|
|
#ifdef USE_WAKEUP_PIPE
|
|
if (pipe(wakeupPipe) != 0) {
|
|
wakeupPipe[0] = wakeupPipe[1] = -1;
|
|
LogPrint(BCLog::NET, "pipe() for wakeupPipe failed\n");
|
|
} else {
|
|
int fFlags = fcntl(wakeupPipe[0], F_GETFL, 0);
|
|
if (fcntl(wakeupPipe[0], F_SETFL, fFlags | O_NONBLOCK) == -1) {
|
|
LogPrint(BCLog::NET, "fcntl for O_NONBLOCK on wakeupPipe failed\n");
|
|
}
|
|
fFlags = fcntl(wakeupPipe[1], F_GETFL, 0);
|
|
if (fcntl(wakeupPipe[1], F_SETFL, fFlags | O_NONBLOCK) == -1) {
|
|
LogPrint(BCLog::NET, "fcntl for O_NONBLOCK on wakeupPipe failed\n");
|
|
}
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
|
|
struct kevent event;
|
|
EV_SET(&event, wakeupPipe[0], EVFILT_READ, EV_ADD, 0, 0, nullptr);
|
|
int r = kevent(kqueuefd, &event, 1, nullptr, 0, nullptr);
|
|
if (r != 0) {
|
|
LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__,
|
|
kqueuefd, EV_ADD, wakeupPipe[0], NetworkErrorString(WSAGetLastError()));
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
|
|
epoll_event event;
|
|
event.events = EPOLLIN;
|
|
event.data.fd = wakeupPipe[0];
|
|
int r = epoll_ctl(epollfd, EPOLL_CTL_ADD, wakeupPipe[0], &event);
|
|
if (r != 0) {
|
|
LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__,
|
|
epollfd, EPOLL_CTL_ADD, wakeupPipe[0], NetworkErrorString(WSAGetLastError()));
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Send and receive from sockets, accept connections
|
|
threadSocketHandler = std::thread(&TraceThread<std::function<void()> >, "net", std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
|
|
|
|
if (!gArgs.GetBoolArg("-dnsseed", true))
|
|
LogPrintf("DNS seeding disabled\n");
|
|
else
|
|
threadDNSAddressSeed = std::thread(&TraceThread<std::function<void()> >, "dnsseed", std::function<void()>(std::bind(&CConnman::ThreadDNSAddressSeed, this)));
|
|
|
|
// Initiate outbound connections from -addnode
|
|
threadOpenAddedConnections = std::thread(&TraceThread<std::function<void()> >, "addcon", std::function<void()>(std::bind(&CConnman::ThreadOpenAddedConnections, this)));
|
|
|
|
if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
|
|
if (clientInterface) {
|
|
clientInterface->ThreadSafeMessageBox(
|
|
_("Cannot provide specific connections and have addrman find outgoing connections at the same."),
|
|
"", CClientUIInterface::MSG_ERROR);
|
|
}
|
|
return false;
|
|
}
|
|
if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty())
|
|
threadOpenConnections = std::thread(&TraceThread<std::function<void()> >, "opencon", std::function<void()>(std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing)));
|
|
|
|
// Initiate masternode connections
|
|
threadOpenMasternodeConnections = std::thread(&TraceThread<std::function<void()> >, "mncon", std::function<void()>(std::bind(&CConnman::ThreadOpenMasternodeConnections, this)));
|
|
|
|
// Process messages
|
|
threadMessageHandler = std::thread(&TraceThread<std::function<void()> >, "msghand", std::function<void()>(std::bind(&CConnman::ThreadMessageHandler, this)));
|
|
|
|
// Dump network addresses
|
|
scheduler.scheduleEvery(std::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL * 1000);
|
|
|
|
return true;
|
|
}
|
|
|
|
class CNetCleanup
|
|
{
|
|
public:
|
|
CNetCleanup() {}
|
|
|
|
~CNetCleanup()
|
|
{
|
|
#ifdef WIN32
|
|
// Shutdown Windows Sockets
|
|
WSACleanup();
|
|
#endif
|
|
}
|
|
}
|
|
instance_of_cnetcleanup;
|
|
|
|
void CExplicitNetCleanup::callCleanup()
|
|
{
|
|
// Explicit call to destructor of CNetCleanup because it's not implicitly called
|
|
// when the wallet is restarted from within the wallet itself.
|
|
CNetCleanup *tmp = new CNetCleanup();
|
|
delete tmp; // Stroustrup's gonna kill me for that
|
|
}
|
|
|
|
void CConnman::Interrupt()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutexMsgProc);
|
|
flagInterruptMsgProc = true;
|
|
}
|
|
condMsgProc.notify_all();
|
|
|
|
interruptNet();
|
|
InterruptSocks5(true);
|
|
|
|
if (semOutbound) {
|
|
for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++) {
|
|
semOutbound->post();
|
|
}
|
|
}
|
|
|
|
if (semAddnode) {
|
|
for (int i=0; i<nMaxAddnode; i++) {
|
|
semAddnode->post();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CConnman::Stop()
|
|
{
|
|
if (threadMessageHandler.joinable())
|
|
threadMessageHandler.join();
|
|
if (threadOpenMasternodeConnections.joinable())
|
|
threadOpenMasternodeConnections.join();
|
|
if (threadOpenConnections.joinable())
|
|
threadOpenConnections.join();
|
|
if (threadOpenAddedConnections.joinable())
|
|
threadOpenAddedConnections.join();
|
|
if (threadDNSAddressSeed.joinable())
|
|
threadDNSAddressSeed.join();
|
|
if (threadSocketHandler.joinable())
|
|
threadSocketHandler.join();
|
|
|
|
if (fAddressesInitialized)
|
|
{
|
|
DumpData();
|
|
fAddressesInitialized = false;
|
|
}
|
|
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
// Close sockets
|
|
for (CNode *pnode : vNodes)
|
|
pnode->CloseSocketDisconnect(this);
|
|
}
|
|
for (ListenSocket& hListenSocket : vhListenSocket)
|
|
if (hListenSocket.socket != INVALID_SOCKET) {
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode == SOCKETEVENTS_KQUEUE) {
|
|
struct kevent event;
|
|
EV_SET(&event, hListenSocket.socket, EVFILT_READ, EV_DELETE, 0, 0, nullptr);
|
|
kevent(kqueuefd, &event, 1, nullptr, 0, nullptr);
|
|
}
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode == SOCKETEVENTS_EPOLL) {
|
|
epoll_ctl(epollfd, EPOLL_CTL_DEL, hListenSocket.socket, nullptr);
|
|
}
|
|
#endif
|
|
if (!CloseSocket(hListenSocket.socket))
|
|
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
|
|
}
|
|
|
|
// clean up some globals (to help leak detection)
|
|
for (CNode *pnode : vNodes) {
|
|
DeleteNode(pnode);
|
|
}
|
|
for (CNode *pnode : vNodesDisconnected) {
|
|
DeleteNode(pnode);
|
|
}
|
|
vNodes.clear();
|
|
mapSocketToNode.clear();
|
|
mapReceivableNodes.clear();
|
|
{
|
|
LOCK(cs_mapNodesWithDataToSend);
|
|
mapNodesWithDataToSend.clear();
|
|
}
|
|
vNodesDisconnected.clear();
|
|
vhListenSocket.clear();
|
|
semOutbound.reset();
|
|
semAddnode.reset();
|
|
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode == SOCKETEVENTS_KQUEUE && kqueuefd != -1) {
|
|
#ifdef USE_WAKEUP_PIPE
|
|
struct kevent event;
|
|
EV_SET(&event, wakeupPipe[0], EVFILT_READ, EV_DELETE, 0, 0, nullptr);
|
|
kevent(kqueuefd, &event, 1, nullptr, 0, nullptr);
|
|
#endif
|
|
close(kqueuefd);
|
|
}
|
|
kqueuefd = -1;
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode == SOCKETEVENTS_EPOLL && epollfd != -1) {
|
|
#ifdef USE_WAKEUP_PIPE
|
|
epoll_ctl(epollfd, EPOLL_CTL_DEL, wakeupPipe[0], nullptr);
|
|
#endif
|
|
close(epollfd);
|
|
}
|
|
epollfd = -1;
|
|
#endif
|
|
|
|
#ifdef USE_WAKEUP_PIPE
|
|
if (wakeupPipe[0] != -1) close(wakeupPipe[0]);
|
|
if (wakeupPipe[1] != -1) close(wakeupPipe[1]);
|
|
wakeupPipe[0] = wakeupPipe[1] = -1;
|
|
#endif
|
|
}
|
|
|
|
void CConnman::DeleteNode(CNode* pnode)
|
|
{
|
|
assert(pnode);
|
|
bool fUpdateConnectionTime = false;
|
|
m_msgproc->FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
|
|
if(fUpdateConnectionTime) {
|
|
addrman.Connected(pnode->addr);
|
|
}
|
|
delete pnode;
|
|
}
|
|
|
|
CConnman::~CConnman()
|
|
{
|
|
Interrupt();
|
|
Stop();
|
|
}
|
|
|
|
size_t CConnman::GetAddressCount() const
|
|
{
|
|
return addrman.size();
|
|
}
|
|
|
|
void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
|
|
{
|
|
addrman.SetServices(addr, nServices);
|
|
}
|
|
|
|
void CConnman::MarkAddressGood(const CAddress& addr)
|
|
{
|
|
addrman.Good(addr);
|
|
}
|
|
|
|
void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
|
|
{
|
|
addrman.Add(vAddr, addrFrom, nTimePenalty);
|
|
}
|
|
|
|
std::vector<CAddress> CConnman::GetAddresses()
|
|
{
|
|
return addrman.GetAddr();
|
|
}
|
|
|
|
bool CConnman::AddNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
for (const std::string& it : vAddedNodes) {
|
|
if (strNode == it) return false;
|
|
}
|
|
|
|
vAddedNodes.push_back(strNode);
|
|
return true;
|
|
}
|
|
|
|
bool CConnman::RemoveAddedNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vAddedNodes);
|
|
for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
|
|
if (strNode == *it) {
|
|
vAddedNodes.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::AddPendingMasternode(const uint256& proTxHash)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
if (std::find(vPendingMasternodes.begin(), vPendingMasternodes.end(), proTxHash) != vPendingMasternodes.end()) {
|
|
return false;
|
|
}
|
|
|
|
vPendingMasternodes.push_back(proTxHash);
|
|
return true;
|
|
}
|
|
|
|
void CConnman::SetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
auto it = masternodeQuorumNodes.emplace(std::make_pair(llmqType, quorumHash), proTxHashes);
|
|
if (!it.second) {
|
|
it.first->second = proTxHashes;
|
|
}
|
|
}
|
|
|
|
void CConnman::SetMasternodeQuorumRelayMembers(Consensus::LLMQType llmqType, const uint256& quorumHash, const std::set<uint256>& proTxHashes)
|
|
{
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
auto it = masternodeQuorumRelayMembers.emplace(std::make_pair(llmqType, quorumHash), proTxHashes);
|
|
if (!it.second) {
|
|
it.first->second = proTxHashes;
|
|
}
|
|
}
|
|
|
|
// Update existing connections
|
|
ForEachNode([&](CNode* pnode) {
|
|
if (!pnode->verifiedProRegTxHash.IsNull() && !pnode->m_masternode_iqr_connection && IsMasternodeQuorumRelayMember(pnode->verifiedProRegTxHash)) {
|
|
// Tell our peer that we're interested in plain LLMQ recovered signatures.
|
|
// Otherwise the peer would only announce/send messages resulting from QRECSIG,
|
|
// e.g. InstantSend locks or ChainLocks. SPV and regular full nodes should not send
|
|
// this message as they are usually only interested in the higher level messages.
|
|
const CNetMsgMaker msgMaker(pnode->GetSendVersion());
|
|
PushMessage(pnode, msgMaker.Make(NetMsgType::QSENDRECSIGS, true));
|
|
pnode->m_masternode_iqr_connection = true;
|
|
}
|
|
});
|
|
}
|
|
|
|
bool CConnman::HasMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
return masternodeQuorumNodes.count(std::make_pair(llmqType, quorumHash));
|
|
}
|
|
|
|
std::set<uint256> CConnman::GetMasternodeQuorums(Consensus::LLMQType llmqType)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
std::set<uint256> result;
|
|
for (const auto& p : masternodeQuorumNodes) {
|
|
if (p.first.first != llmqType) {
|
|
continue;
|
|
}
|
|
result.emplace(p.first.second);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::set<NodeId> CConnman::GetMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash) const
|
|
{
|
|
LOCK2(cs_vNodes, cs_vPendingMasternodes);
|
|
auto it = masternodeQuorumNodes.find(std::make_pair(llmqType, quorumHash));
|
|
if (it == masternodeQuorumNodes.end()) {
|
|
return {};
|
|
}
|
|
const auto& proRegTxHashes = it->second;
|
|
|
|
std::set<NodeId> nodes;
|
|
for (const auto pnode : vNodes) {
|
|
if (pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (!pnode->qwatch && (pnode->verifiedProRegTxHash.IsNull() || !proRegTxHashes.count(pnode->verifiedProRegTxHash))) {
|
|
continue;
|
|
}
|
|
nodes.emplace(pnode->GetId());
|
|
}
|
|
return nodes;
|
|
}
|
|
|
|
void CConnman::RemoveMasternodeQuorumNodes(Consensus::LLMQType llmqType, const uint256& quorumHash)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
masternodeQuorumNodes.erase(std::make_pair(llmqType, quorumHash));
|
|
masternodeQuorumRelayMembers.erase(std::make_pair(llmqType, quorumHash));
|
|
}
|
|
|
|
bool CConnman::IsMasternodeQuorumNode(const CNode* pnode)
|
|
{
|
|
// Let's see if this is an outgoing connection to an address that is known to be a masternode
|
|
// We however only need to know this if the node did not authenticate itself as a MN yet
|
|
uint256 assumedProTxHash;
|
|
if (pnode->verifiedProRegTxHash.IsNull() && !pnode->fInbound) {
|
|
auto mnList = deterministicMNManager->GetListAtChainTip();
|
|
auto dmn = mnList.GetMNByService(pnode->addr);
|
|
if (dmn == nullptr) {
|
|
// This is definitely not a masternode
|
|
return false;
|
|
}
|
|
assumedProTxHash = dmn->proTxHash;
|
|
}
|
|
|
|
LOCK(cs_vPendingMasternodes);
|
|
for (const auto& p : masternodeQuorumNodes) {
|
|
if (!pnode->verifiedProRegTxHash.IsNull()) {
|
|
if (p.second.count(pnode->verifiedProRegTxHash)) {
|
|
return true;
|
|
}
|
|
} else if (!assumedProTxHash.IsNull()) {
|
|
if (p.second.count(assumedProTxHash)) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CConnman::IsMasternodeQuorumRelayMember(const uint256& protxHash)
|
|
{
|
|
if (protxHash.IsNull()) {
|
|
return false;
|
|
}
|
|
LOCK(cs_vPendingMasternodes);
|
|
for (const auto& p : masternodeQuorumRelayMembers) {
|
|
if (p.second.count(protxHash)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::AddPendingProbeConnections(const std::set<uint256> &proTxHashes)
|
|
{
|
|
LOCK(cs_vPendingMasternodes);
|
|
masternodePendingProbes.insert(proTxHashes.begin(), proTxHashes.end());
|
|
}
|
|
|
|
size_t CConnman::GetNodeCount(NumConnections flags)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
|
|
int nNum = 0;
|
|
for (const auto& pnode : vNodes) {
|
|
if (pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
|
|
nNum++;
|
|
}
|
|
}
|
|
|
|
return nNum;
|
|
}
|
|
|
|
size_t CConnman::GetMaxOutboundNodeCount()
|
|
{
|
|
return nMaxOutbound;
|
|
}
|
|
|
|
void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
|
|
{
|
|
vstats.clear();
|
|
LOCK(cs_vNodes);
|
|
vstats.reserve(vNodes.size());
|
|
for (CNode* pnode : vNodes) {
|
|
if (pnode->fDisconnect) {
|
|
continue;
|
|
}
|
|
vstats.emplace_back();
|
|
pnode->copyStats(vstats.back());
|
|
}
|
|
}
|
|
|
|
bool CConnman::DisconnectNode(const std::string& strNode)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
if (CNode* pnode = FindNode(strNode)) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
bool CConnman::DisconnectNode(NodeId id)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for(CNode* pnode : vNodes) {
|
|
if (id == pnode->GetId()) {
|
|
pnode->fDisconnect = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void CConnman::RelayTransaction(const CTransaction& tx)
|
|
{
|
|
uint256 hash = tx.GetHash();
|
|
int nInv = MSG_TX;
|
|
if (CCoinJoin::GetDSTX(hash)) {
|
|
nInv = MSG_DSTX;
|
|
}
|
|
CInv inv(nInv, hash);
|
|
RelayInv(inv);
|
|
}
|
|
|
|
void CConnman::RelayInv(CInv &inv, const int minProtoVersion) {
|
|
LOCK(cs_vNodes);
|
|
for (const auto& pnode : vNodes) {
|
|
if (pnode->nVersion < minProtoVersion || !pnode->CanRelay())
|
|
continue;
|
|
pnode->PushInventory(inv);
|
|
}
|
|
}
|
|
|
|
void CConnman::RelayInvFiltered(CInv &inv, const CTransaction& relatedTx, const int minProtoVersion)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const auto& pnode : vNodes) {
|
|
if (pnode->nVersion < minProtoVersion || !pnode->CanRelay())
|
|
continue;
|
|
{
|
|
LOCK(pnode->cs_filter);
|
|
if(pnode->pfilter && !pnode->pfilter->IsRelevantAndUpdate(relatedTx))
|
|
continue;
|
|
}
|
|
pnode->PushInventory(inv);
|
|
}
|
|
}
|
|
|
|
void CConnman::RelayInvFiltered(CInv &inv, const uint256& relatedTxHash, const int minProtoVersion)
|
|
{
|
|
LOCK(cs_vNodes);
|
|
for (const auto& pnode : vNodes) {
|
|
if (pnode->nVersion < minProtoVersion || !pnode->CanRelay())
|
|
continue;
|
|
{
|
|
LOCK(pnode->cs_filter);
|
|
if(pnode->pfilter && !pnode->pfilter->contains(relatedTxHash)) continue;
|
|
}
|
|
pnode->PushInventory(inv);
|
|
}
|
|
}
|
|
|
|
void CConnman::RecordBytesRecv(uint64_t bytes)
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
nTotalBytesRecv += bytes;
|
|
statsClient.count("bandwidth.bytesReceived", bytes, 0.1f);
|
|
statsClient.gauge("bandwidth.totalBytesReceived", nTotalBytesRecv, 0.01f);
|
|
}
|
|
|
|
void CConnman::RecordBytesSent(uint64_t bytes)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nTotalBytesSent += bytes;
|
|
statsClient.count("bandwidth.bytesSent", bytes, 0.01f);
|
|
statsClient.gauge("bandwidth.totalBytesSent", nTotalBytesSent, 0.01f);
|
|
|
|
uint64_t now = GetTime();
|
|
if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
|
|
{
|
|
// timeframe expired, reset cycle
|
|
nMaxOutboundCycleStartTime = now;
|
|
nMaxOutboundTotalBytesSentInCycle = 0;
|
|
}
|
|
|
|
// TODO, exclude whitebind peers
|
|
nMaxOutboundTotalBytesSentInCycle += bytes;
|
|
}
|
|
|
|
void CConnman::SetMaxOutboundTarget(uint64_t limit)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
nMaxOutboundLimit = limit;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTarget()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nMaxOutboundLimit;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTimeframe()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nMaxOutboundTimeframe;
|
|
}
|
|
|
|
uint64_t CConnman::GetMaxOutboundTimeLeftInCycle()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
if (nMaxOutboundCycleStartTime == 0)
|
|
return nMaxOutboundTimeframe;
|
|
|
|
uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
|
|
uint64_t now = GetTime();
|
|
return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
|
|
}
|
|
|
|
void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundTimeframe != timeframe)
|
|
{
|
|
// reset measure-cycle in case of changing
|
|
// the timeframe
|
|
nMaxOutboundCycleStartTime = GetTime();
|
|
}
|
|
nMaxOutboundTimeframe = timeframe;
|
|
}
|
|
|
|
bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return false;
|
|
|
|
if (historicalBlockServingLimit)
|
|
{
|
|
// keep a large enough buffer to at least relay each block once
|
|
uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
|
|
uint64_t buffer = timeLeftInCycle / 600 * MaxBlockSize(fDIP0001ActiveAtTip);
|
|
if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
|
|
return true;
|
|
}
|
|
else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
uint64_t CConnman::GetOutboundTargetBytesLeft()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
if (nMaxOutboundLimit == 0)
|
|
return 0;
|
|
|
|
return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesRecv()
|
|
{
|
|
LOCK(cs_totalBytesRecv);
|
|
return nTotalBytesRecv;
|
|
}
|
|
|
|
uint64_t CConnman::GetTotalBytesSent()
|
|
{
|
|
LOCK(cs_totalBytesSent);
|
|
return nTotalBytesSent;
|
|
}
|
|
|
|
ServiceFlags CConnman::GetLocalServices() const
|
|
{
|
|
return nLocalServices;
|
|
}
|
|
|
|
void CConnman::SetBestHeight(int height)
|
|
{
|
|
nBestHeight.store(height, std::memory_order_release);
|
|
}
|
|
|
|
int CConnman::GetBestHeight() const
|
|
{
|
|
return nBestHeight.load(std::memory_order_acquire);
|
|
}
|
|
|
|
unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
|
|
|
|
CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string& addrNameIn, bool fInboundIn) :
|
|
nTimeConnected(GetSystemTimeInSeconds()),
|
|
nTimeFirstMessageReceived(0),
|
|
fFirstMessageIsMNAUTH(false),
|
|
addr(addrIn),
|
|
addrBind(addrBindIn),
|
|
fInbound(fInboundIn),
|
|
nKeyedNetGroup(nKeyedNetGroupIn),
|
|
addrKnown(5000, 0.001),
|
|
filterInventoryKnown(50000, 0.000001),
|
|
id(idIn),
|
|
nLocalHostNonce(nLocalHostNonceIn),
|
|
nLocalServices(nLocalServicesIn),
|
|
nMyStartingHeight(nMyStartingHeightIn),
|
|
nSendVersion(0)
|
|
{
|
|
nServices = NODE_NONE;
|
|
hSocket = hSocketIn;
|
|
nRecvVersion = INIT_PROTO_VERSION;
|
|
nLastSend = 0;
|
|
nLastRecv = 0;
|
|
nSendBytes = 0;
|
|
nRecvBytes = 0;
|
|
nTimeOffset = 0;
|
|
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
|
|
nVersion = 0;
|
|
nNumWarningsSkipped = 0;
|
|
nLastWarningTime = 0;
|
|
strSubVer = "";
|
|
fWhitelisted = false;
|
|
fOneShot = false;
|
|
m_manual_connection = false;
|
|
fClient = false; // set by version message
|
|
m_limited_node = false; // set by version message
|
|
fFeeler = false;
|
|
fSuccessfullyConnected = false;
|
|
fDisconnect = false;
|
|
nRefCount = 0;
|
|
nSendSize = 0;
|
|
nSendOffset = 0;
|
|
hashContinue = uint256();
|
|
nStartingHeight = -1;
|
|
filterInventoryKnown.reset();
|
|
fSendMempool = false;
|
|
fGetAddr = false;
|
|
nNextLocalAddrSend = 0;
|
|
nNextAddrSend = 0;
|
|
fRelayTxes = false;
|
|
fSentAddr = false;
|
|
timeLastMempoolReq = 0;
|
|
nLastBlockTime = 0;
|
|
nLastTXTime = 0;
|
|
nPingNonceSent = 0;
|
|
nPingUsecStart = 0;
|
|
nPingUsecTime = 0;
|
|
fPingQueued = false;
|
|
m_masternode_connection = false;
|
|
m_masternode_probe_connection = false;
|
|
nMinPingUsecTime = std::numeric_limits<int64_t>::max();
|
|
fPauseRecv = false;
|
|
fPauseSend = false;
|
|
fHasRecvData = false;
|
|
fCanSendData = false;
|
|
nProcessQueueSize = 0;
|
|
nSendMsgSize = 0;
|
|
|
|
for (const std::string &msg : getAllNetMessageTypes())
|
|
mapRecvBytesPerMsgCmd[msg] = 0;
|
|
mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
|
|
|
|
if (fLogIPs) {
|
|
LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
|
|
} else {
|
|
LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
|
|
}
|
|
}
|
|
|
|
CNode::~CNode()
|
|
{
|
|
CloseSocket(hSocket);
|
|
}
|
|
|
|
bool CConnman::NodeFullyConnected(const CNode* pnode)
|
|
{
|
|
return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
|
|
}
|
|
|
|
void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
|
|
{
|
|
size_t nMessageSize = msg.data.size();
|
|
size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE;
|
|
LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId());
|
|
statsClient.count("bandwidth.message." + SanitizeString(msg.command.c_str()) + ".bytesSent", nTotalSize, 1.0f);
|
|
statsClient.inc("message.sent." + SanitizeString(msg.command.c_str()), 1.0f);
|
|
|
|
std::vector<unsigned char> serializedHeader;
|
|
serializedHeader.reserve(CMessageHeader::HEADER_SIZE);
|
|
uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize);
|
|
CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(), nMessageSize);
|
|
memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
|
|
|
|
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr};
|
|
|
|
size_t nBytesSent = 0;
|
|
{
|
|
LOCK(pnode->cs_vSend);
|
|
bool hasPendingData = !pnode->vSendMsg.empty();
|
|
|
|
//log total amount of bytes per command
|
|
pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
|
|
pnode->nSendSize += nTotalSize;
|
|
|
|
if (pnode->nSendSize > nSendBufferMaxSize)
|
|
pnode->fPauseSend = true;
|
|
pnode->vSendMsg.push_back(std::move(serializedHeader));
|
|
if (nMessageSize)
|
|
pnode->vSendMsg.push_back(std::move(msg.data));
|
|
pnode->nSendMsgSize = pnode->vSendMsg.size();
|
|
|
|
{
|
|
LOCK(cs_mapNodesWithDataToSend);
|
|
// we're not holding cs_vNodes here, so there is a chance of this node being disconnected shortly before
|
|
// we get here. Whoever called PushMessage still has a ref to CNode*, but will later Release() it, so we
|
|
// might end up having an entry in mapNodesWithDataToSend that is not in vNodes anymore. We need to
|
|
// Add/Release refs when adding/erasing mapNodesWithDataToSend.
|
|
if (mapNodesWithDataToSend.emplace(pnode->GetId(), pnode).second) {
|
|
pnode->AddRef();
|
|
}
|
|
}
|
|
|
|
// wake up select() call in case there was no pending data before (so it was not selecting this socket for sending)
|
|
if (!hasPendingData && wakeupSelectNeeded)
|
|
WakeSelect();
|
|
}
|
|
if (nBytesSent)
|
|
RecordBytesSent(nBytesSent);
|
|
}
|
|
|
|
bool CConnman::ForNode(const CService& addr, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func)
|
|
{
|
|
CNode* found = nullptr;
|
|
LOCK(cs_vNodes);
|
|
for (auto&& pnode : vNodes) {
|
|
if((CService)pnode->addr == addr) {
|
|
found = pnode;
|
|
break;
|
|
}
|
|
}
|
|
return found != nullptr && cond(found) && func(found);
|
|
}
|
|
|
|
bool CConnman::ForNode(NodeId id, std::function<bool(const CNode* pnode)> cond, std::function<bool(CNode* pnode)> func)
|
|
{
|
|
CNode* found = nullptr;
|
|
LOCK(cs_vNodes);
|
|
for (auto&& pnode : vNodes) {
|
|
if(pnode->GetId() == id) {
|
|
found = pnode;
|
|
break;
|
|
}
|
|
}
|
|
return found != nullptr && cond(found) && func(found);
|
|
}
|
|
|
|
bool CConnman::IsMasternodeOrDisconnectRequested(const CService& addr) {
|
|
return ForNode(addr, AllNodes, [](CNode* pnode){
|
|
return pnode->m_masternode_connection || pnode->fDisconnect;
|
|
});
|
|
}
|
|
|
|
int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds)
|
|
{
|
|
if (m_next_send_inv_to_incoming < now) {
|
|
// If this function were called from multiple threads simultaneously
|
|
// it would possible that both update the next send variable, and return a different result to their caller.
|
|
// This is not possible in practice as only the net processing thread invokes this function.
|
|
m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds);
|
|
}
|
|
return m_next_send_inv_to_incoming;
|
|
}
|
|
|
|
int64_t PoissonNextSend(int64_t now, int average_interval_seconds)
|
|
{
|
|
return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
|
|
}
|
|
|
|
std::vector<CNode*> CConnman::CopyNodeVector(std::function<bool(const CNode* pnode)> cond)
|
|
{
|
|
std::vector<CNode*> vecNodesCopy;
|
|
LOCK(cs_vNodes);
|
|
vecNodesCopy.reserve(vNodes.size());
|
|
for(size_t i = 0; i < vNodes.size(); ++i) {
|
|
CNode* pnode = vNodes[i];
|
|
if (!cond(pnode))
|
|
continue;
|
|
pnode->AddRef();
|
|
vecNodesCopy.push_back(pnode);
|
|
}
|
|
return vecNodesCopy;
|
|
}
|
|
|
|
std::vector<CNode*> CConnman::CopyNodeVector()
|
|
{
|
|
return CopyNodeVector(AllNodes);
|
|
}
|
|
|
|
void CConnman::ReleaseNodeVector(const std::vector<CNode*>& vecNodes)
|
|
{
|
|
for(size_t i = 0; i < vecNodes.size(); ++i) {
|
|
CNode* pnode = vecNodes[i];
|
|
pnode->Release();
|
|
}
|
|
}
|
|
|
|
CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
|
|
{
|
|
return CSipHasher(nSeed0, nSeed1).Write(id);
|
|
}
|
|
|
|
uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad) const
|
|
{
|
|
std::vector<unsigned char> vchNetGroup(ad.GetGroup());
|
|
|
|
return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup.data(), vchNetGroup.size()).Finalize();
|
|
}
|
|
|
|
void CConnman::RegisterEvents(CNode *pnode)
|
|
{
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode != SOCKETEVENTS_KQUEUE) {
|
|
return;
|
|
}
|
|
|
|
LOCK(pnode->cs_hSocket);
|
|
assert(pnode->hSocket != INVALID_SOCKET);
|
|
|
|
struct kevent events[2];
|
|
EV_SET(&events[0], pnode->hSocket, EVFILT_READ, EV_ADD, 0, 0, nullptr);
|
|
EV_SET(&events[1], pnode->hSocket, EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, nullptr);
|
|
|
|
int r = kevent(kqueuefd, events, 2, nullptr, 0, nullptr);
|
|
if (r != 0) {
|
|
LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__,
|
|
kqueuefd, EV_ADD, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
|
|
}
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode != SOCKETEVENTS_EPOLL) {
|
|
return;
|
|
}
|
|
|
|
LOCK(pnode->cs_hSocket);
|
|
assert(pnode->hSocket != INVALID_SOCKET);
|
|
|
|
epoll_event e;
|
|
// We're using edge-triggered mode, so it's important that we drain sockets even if no signals come in
|
|
e.events = EPOLLIN | EPOLLOUT | EPOLLET | EPOLLERR | EPOLLHUP;
|
|
e.data.fd = pnode->hSocket;
|
|
|
|
int r = epoll_ctl(epollfd, EPOLL_CTL_ADD, pnode->hSocket, &e);
|
|
if (r != 0) {
|
|
LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__,
|
|
epollfd, EPOLL_CTL_ADD, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CConnman::UnregisterEvents(CNode *pnode)
|
|
{
|
|
#ifdef USE_KQUEUE
|
|
if (socketEventsMode != SOCKETEVENTS_KQUEUE) {
|
|
return;
|
|
}
|
|
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
struct kevent events[2];
|
|
EV_SET(&events[0], pnode->hSocket, EVFILT_READ, EV_DELETE, 0, 0, nullptr);
|
|
EV_SET(&events[1], pnode->hSocket, EVFILT_WRITE, EV_DELETE, 0, 0, nullptr);
|
|
|
|
int r = kevent(kqueuefd, events, 2, nullptr, 0, nullptr);
|
|
if (r != 0) {
|
|
LogPrint(BCLog::NET, "%s -- kevent(%d, %d, %d, ...) failed. error: %s\n", __func__,
|
|
kqueuefd, EV_DELETE, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
|
|
}
|
|
#endif
|
|
#ifdef USE_EPOLL
|
|
if (socketEventsMode != SOCKETEVENTS_EPOLL) {
|
|
return;
|
|
}
|
|
|
|
LOCK(pnode->cs_hSocket);
|
|
if (pnode->hSocket == INVALID_SOCKET) {
|
|
return;
|
|
}
|
|
|
|
int r = epoll_ctl(epollfd, EPOLL_CTL_DEL, pnode->hSocket, nullptr);
|
|
if (r != 0) {
|
|
LogPrint(BCLog::NET, "%s -- epoll_ctl(%d, %d, %d, ...) failed. error: %s\n", __func__,
|
|
epollfd, EPOLL_CTL_DEL, pnode->hSocket, NetworkErrorString(WSAGetLastError()));
|
|
}
|
|
#endif
|
|
}
|