dash/src/miner.cpp
2024-05-29 08:20:57 +00:00

589 lines
24 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Copyright (c) 2014-2024 The Dash Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <miner.h>
#include <amount.h>
#include <chain.h>
#include <chainparams.h>
#include <consensus/consensus.h>
#include <consensus/merkle.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <deploymentstatus.h>
#include <node/context.h>
#include <policy/feerate.h>
#include <policy/policy.h>
#include <pow.h>
#include <primitives/transaction.h>
#include <timedata.h>
#include <util/moneystr.h>
#include <util/system.h>
#include <evo/specialtx.h>
#include <evo/cbtx.h>
#include <evo/chainhelper.h>
#include <evo/creditpool.h>
#include <evo/mnhftx.h>
#include <evo/simplifiedmns.h>
#include <governance/governance.h>
#include <llmq/blockprocessor.h>
#include <llmq/chainlocks.h>
#include <llmq/context.h>
#include <llmq/instantsend.h>
#include <llmq/options.h>
#include <masternode/payments.h>
#include <spork.h>
#include <validation.h>
#include <algorithm>
#include <utility>
int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
int64_t nOldTime = pblock->nTime;
int64_t nNewTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());
if (nOldTime < nNewTime)
pblock->nTime = nNewTime;
// Updating time can change work required on testnet:
if (consensusParams.fPowAllowMinDifficultyBlocks)
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams);
return nNewTime - nOldTime;
}
BlockAssembler::Options::Options() {
blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE);
nBlockMaxSize = DEFAULT_BLOCK_MAX_SIZE;
}
BlockAssembler::BlockAssembler(CChainState& chainstate, const NodeContext& node, const CTxMemPool& mempool, const CChainParams& params, const Options& options) :
chainparams(params),
m_mempool(mempool),
m_chainstate(chainstate),
m_dmnman(*Assert(node.dmnman)),
m_cpoolman(*Assert(node.cpoolman)),
m_chain_helper(*Assert(node.chain_helper)),
m_mnhfman(*Assert(node.mnhf_manager)),
m_quorum_block_processor(*Assert(Assert(node.llmq_ctx)->quorum_block_processor)),
m_qman(*Assert(Assert(node.llmq_ctx)->qman)),
m_clhandler(*Assert(Assert(node.llmq_ctx)->clhandler)),
m_isman(*Assert(Assert(node.llmq_ctx)->isman)),
m_evoDb(*Assert(node.evodb))
{
blockMinFeeRate = options.blockMinFeeRate;
nBlockMaxSize = options.nBlockMaxSize;
}
static BlockAssembler::Options DefaultOptions()
{
// Block resource limits
BlockAssembler::Options options;
options.nBlockMaxSize = DEFAULT_BLOCK_MAX_SIZE;
if (gArgs.IsArgSet("-blockmaxsize")) {
options.nBlockMaxSize = gArgs.GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE);
}
if (gArgs.IsArgSet("-blockmintxfee")) {
std::optional<CAmount> parsed = ParseMoney(gArgs.GetArg("-blockmintxfee", ""));
options.blockMinFeeRate = CFeeRate{parsed.value_or(DEFAULT_BLOCK_MIN_TX_FEE)};
} else {
options.blockMinFeeRate = CFeeRate{DEFAULT_BLOCK_MIN_TX_FEE};
}
return options;
}
BlockAssembler::BlockAssembler(CChainState& chainstate, const NodeContext& node, const CTxMemPool& mempool, const CChainParams& params)
: BlockAssembler(chainstate, node, mempool, params, DefaultOptions()) {}
void BlockAssembler::resetBlock()
{
inBlock.clear();
// Reserve space for coinbase tx
nBlockSize = 1000;
nBlockSigOps = 100;
// These counters do not include coinbase tx
nBlockTx = 0;
nFees = 0;
}
std::unique_ptr<CBlockTemplate> BlockAssembler::CreateNewBlock(const CScript& scriptPubKeyIn)
{
int64_t nTimeStart = GetTimeMicros();
resetBlock();
pblocktemplate.reset(new CBlockTemplate());
if(!pblocktemplate.get())
return nullptr;
CBlock* const pblock = &pblocktemplate->block; // pointer for convenience
// Add dummy coinbase tx as first transaction
pblock->vtx.emplace_back();
pblocktemplate->vTxFees.push_back(-1); // updated at end
pblocktemplate->vTxSigOps.push_back(-1); // updated at end
LOCK2(cs_main, m_mempool.cs);
assert(std::addressof(*::ChainActive().Tip()) == std::addressof(*m_chainstate.m_chain.Tip()));
CBlockIndex* pindexPrev = m_chainstate.m_chain.Tip();
assert(pindexPrev != nullptr);
nHeight = pindexPrev->nHeight + 1;
const bool fDIP0001Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0001)};
const bool fDIP0003Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0003)};
const bool fDIP0008Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_DIP0008)};
const bool fV20Active_context{DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_V20)};
// Limit size to between 1K and MaxBlockSize()-1K for sanity:
nBlockMaxSize = std::max<unsigned int>(1000, std::min<unsigned int>(MaxBlockSize(fDIP0001Active_context) - 1000, nBlockMaxSize));
nBlockMaxSigOps = MaxBlockSigOps(fDIP0001Active_context);
pblock->nVersion = g_versionbitscache.ComputeBlockVersion(pindexPrev, chainparams.GetConsensus());
// Non-mainnet only: allow overriding block.nVersion with
// -blockversion=N to test forking scenarios
if (Params().NetworkIDString() != CBaseChainParams::MAIN)
pblock->nVersion = gArgs.GetArg("-blockversion", pblock->nVersion);
pblock->nTime = GetAdjustedTime();
const int64_t nMedianTimePast = pindexPrev->GetMedianTimePast();
nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST)
? nMedianTimePast
: pblock->GetBlockTime();
if (fDIP0003Active_context) {
for (const Consensus::LLMQParams& params : llmq::GetEnabledQuorumParams(pindexPrev)) {
std::vector<CTransactionRef> vqcTx;
if (m_quorum_block_processor.GetMineableCommitmentsTx(params,
nHeight,
vqcTx)) {
for (const auto& qcTx : vqcTx) {
pblock->vtx.emplace_back(qcTx);
pblocktemplate->vTxFees.emplace_back(0);
pblocktemplate->vTxSigOps.emplace_back(0);
nBlockSize += qcTx->GetTotalSize();
++nBlockTx;
}
}
}
}
int nPackagesSelected = 0;
int nDescendantsUpdated = 0;
addPackageTxs(nPackagesSelected, nDescendantsUpdated, pindexPrev);
int64_t nTime1 = GetTimeMicros();
m_last_block_num_txs = nBlockTx;
m_last_block_size = nBlockSize;
LogPrintf("CreateNewBlock(): total size %u txs: %u fees: %ld sigops %d\n", nBlockSize, nBlockTx, nFees, nBlockSigOps);
// Create coinbase transaction.
CMutableTransaction coinbaseTx;
coinbaseTx.vin.resize(1);
coinbaseTx.vin[0].prevout.SetNull();
coinbaseTx.vout.resize(1);
coinbaseTx.vout[0].scriptPubKey = scriptPubKeyIn;
// NOTE: unlike in bitcoin, we need to pass PREVIOUS block height here
CAmount blockSubsidy = GetBlockSubsidyInner(pindexPrev->nBits, pindexPrev->nHeight, Params().GetConsensus(), fV20Active_context);
CAmount blockReward = blockSubsidy + nFees;
// Compute regular coinbase transaction.
coinbaseTx.vout[0].nValue = blockReward;
if (!fDIP0003Active_context) {
coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0;
} else {
coinbaseTx.vin[0].scriptSig = CScript() << OP_RETURN;
coinbaseTx.nVersion = 3;
coinbaseTx.nType = TRANSACTION_COINBASE;
CCbTx cbTx;
if (fV20Active_context) {
cbTx.nVersion = CCbTx::Version::CLSIG_AND_BALANCE;
} else if (fDIP0008Active_context) {
cbTx.nVersion = CCbTx::Version::MERKLE_ROOT_QUORUMS;
} else {
cbTx.nVersion = CCbTx::Version::MERKLE_ROOT_MNLIST;
}
cbTx.nHeight = nHeight;
BlockValidationState state;
if (!CalcCbTxMerkleRootMNList(*pblock, pindexPrev, cbTx.merkleRootMNList, m_dmnman, state, ::ChainstateActive().CoinsTip())) {
throw std::runtime_error(strprintf("%s: CalcCbTxMerkleRootMNList failed: %s", __func__, state.ToString()));
}
if (fDIP0008Active_context) {
if (!CalcCbTxMerkleRootQuorums(*pblock, pindexPrev, m_quorum_block_processor, cbTx.merkleRootQuorums, state)) {
throw std::runtime_error(strprintf("%s: CalcCbTxMerkleRootQuorums failed: %s", __func__, state.ToString()));
}
if (fV20Active_context) {
if (CalcCbTxBestChainlock(m_clhandler, pindexPrev, cbTx.bestCLHeightDiff, cbTx.bestCLSignature)) {
LogPrintf("CreateNewBlock() h[%d] CbTx bestCLHeightDiff[%d] CLSig[%s]\n", nHeight, cbTx.bestCLHeightDiff, cbTx.bestCLSignature.ToString());
} else {
// not an error
LogPrintf("CreateNewBlock() h[%d] CbTx failed to find best CL. Inserting null CL\n", nHeight);
}
BlockValidationState state;
const auto creditPoolDiff = GetCreditPoolDiffForBlock(m_cpoolman, m_qman, *pblock, pindexPrev, chainparams.GetConsensus(), blockSubsidy, state);
if (creditPoolDiff == std::nullopt) {
throw std::runtime_error(strprintf("%s: GetCreditPoolDiffForBlock failed: %s", __func__, state.ToString()));
}
cbTx.creditPoolBalance = creditPoolDiff->GetTotalLocked();
}
}
SetTxPayload(coinbaseTx, cbTx);
}
// Update coinbase transaction with additional info about masternode and governance payments,
// get some info back to pass to getblocktemplate
m_chain_helper.mn_payments->FillBlockPayments(coinbaseTx, pindexPrev, blockSubsidy, nFees, pblocktemplate->voutMasternodePayments, pblocktemplate->voutSuperblockPayments);
pblock->vtx[0] = MakeTransactionRef(std::move(coinbaseTx));
pblocktemplate->vTxFees[0] = -nFees;
// Fill in header
pblock->hashPrevBlock = pindexPrev->GetBlockHash();
UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev);
pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus());
pblock->nNonce = 0;
pblocktemplate->nPrevBits = pindexPrev->nBits;
pblocktemplate->vTxSigOps[0] = GetLegacySigOpCount(*pblock->vtx[0]);
BlockValidationState state;
assert(std::addressof(::ChainstateActive()) == std::addressof(m_chainstate));
if (!TestBlockValidity(state, m_clhandler, m_evoDb, chainparams, m_chainstate, *pblock, pindexPrev, false, false)) {
throw std::runtime_error(strprintf("%s: TestBlockValidity failed: %s", __func__, state.ToString()));
}
int64_t nTime2 = GetTimeMicros();
LogPrint(BCLog::BENCHMARK, "CreateNewBlock() packages: %.2fms (%d packages, %d updated descendants), validity: %.2fms (total %.2fms)\n", 0.001 * (nTime1 - nTimeStart), nPackagesSelected, nDescendantsUpdated, 0.001 * (nTime2 - nTime1), 0.001 * (nTime2 - nTimeStart));
return std::move(pblocktemplate);
}
void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries& testSet)
{
for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end(); ) {
// Only test txs not already in the block
if (inBlock.count(*iit)) {
testSet.erase(iit++);
}
else {
iit++;
}
}
}
bool BlockAssembler::TestPackage(uint64_t packageSize, unsigned int packageSigOps) const
{
if (nBlockSize + packageSize >= nBlockMaxSize)
return false;
if (nBlockSigOps + packageSigOps >= nBlockMaxSigOps)
return false;
return true;
}
// Perform transaction-level checks before adding to block:
// - transaction finality (locktime)
// - safe TXs in regard to ChainLocks
bool BlockAssembler::TestPackageTransactions(const CTxMemPool::setEntries& package) const
{
for (CTxMemPool::txiter it : package) {
if (!IsFinalTx(it->GetTx(), nHeight, nLockTimeCutoff))
return false;
const auto& txid = it->GetTx().GetHash();
if (!m_isman.RejectConflictingBlocks() || !m_isman.IsInstantSendEnabled() || m_isman.IsLocked(txid)) continue;
if (!it->GetTx().vin.empty() && !m_clhandler.IsTxSafeForMining(txid)) {
return false;
}
}
return true;
}
void BlockAssembler::AddToBlock(CTxMemPool::txiter iter)
{
pblocktemplate->block.vtx.emplace_back(iter->GetSharedTx());
pblocktemplate->vTxFees.push_back(iter->GetFee());
pblocktemplate->vTxSigOps.push_back(iter->GetSigOpCount());
nBlockSize += iter->GetTxSize();
++nBlockTx;
nBlockSigOps += iter->GetSigOpCount();
nFees += iter->GetFee();
inBlock.insert(iter);
bool fPrintPriority = gArgs.GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY);
if (fPrintPriority) {
LogPrintf("fee %s txid %s\n",
CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(),
iter->GetTx().GetHash().ToString());
}
}
int BlockAssembler::UpdatePackagesForAdded(const CTxMemPool::setEntries& alreadyAdded,
indexed_modified_transaction_set &mapModifiedTx)
{
AssertLockHeld(m_mempool.cs);
int nDescendantsUpdated = 0;
for (CTxMemPool::txiter it : alreadyAdded) {
CTxMemPool::setEntries descendants;
m_mempool.CalculateDescendants(it, descendants);
// Insert all descendants (not yet in block) into the modified set
for (CTxMemPool::txiter desc : descendants) {
if (alreadyAdded.count(desc))
continue;
++nDescendantsUpdated;
modtxiter mit = mapModifiedTx.find(desc);
if (mit == mapModifiedTx.end()) {
CTxMemPoolModifiedEntry modEntry(desc);
modEntry.nSizeWithAncestors -= it->GetTxSize();
modEntry.nModFeesWithAncestors -= it->GetModifiedFee();
modEntry.nSigOpCountWithAncestors -= it->GetSigOpCount();
mapModifiedTx.insert(modEntry);
} else {
mapModifiedTx.modify(mit, update_for_parent_inclusion(it));
}
}
}
return nDescendantsUpdated;
}
// Skip entries in mapTx that are already in a block or are present
// in mapModifiedTx (which implies that the mapTx ancestor state is
// stale due to ancestor inclusion in the block)
// Also skip transactions that we've already failed to add. This can happen if
// we consider a transaction in mapModifiedTx and it fails: we can then
// potentially consider it again while walking mapTx. It's currently
// guaranteed to fail again, but as a belt-and-suspenders check we put it in
// failedTx and avoid re-evaluation, since the re-evaluation would be using
// cached size/sigops/fee values that are not actually correct.
bool BlockAssembler::SkipMapTxEntry(CTxMemPool::txiter it, indexed_modified_transaction_set &mapModifiedTx, CTxMemPool::setEntries &failedTx)
{
AssertLockHeld(m_mempool.cs);
assert(it != m_mempool.mapTx.end());
return mapModifiedTx.count(it) || inBlock.count(it) || failedTx.count(it);
}
void BlockAssembler::SortForBlock(const CTxMemPool::setEntries& package, std::vector<CTxMemPool::txiter>& sortedEntries)
{
// Sort package by ancestor count
// If a transaction A depends on transaction B, then A's ancestor count
// must be greater than B's. So this is sufficient to validly order the
// transactions for block inclusion.
sortedEntries.clear();
sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end());
std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount());
}
// This transaction selection algorithm orders the mempool based
// on feerate of a transaction including all unconfirmed ancestors.
// Since we don't remove transactions from the mempool as we select them
// for block inclusion, we need an alternate method of updating the feerate
// of a transaction with its not-yet-selected ancestors as we go.
// This is accomplished by walking the in-mempool descendants of selected
// transactions and storing a temporary modified state in mapModifiedTxs.
// Each time through the loop, we compare the best transaction in
// mapModifiedTxs with the next transaction in the mempool to decide what
// transaction package to work on next.
void BlockAssembler::addPackageTxs(int &nPackagesSelected, int &nDescendantsUpdated, const CBlockIndex* const pindexPrev)
{
AssertLockHeld(m_mempool.cs);
// This credit pool is used only to check withdrawal limits and to find
// duplicates of indexes. There's used `BlockSubsidy` equaled to 0
std::optional<CCreditPoolDiff> creditPoolDiff;
if (DeploymentActiveAfter(pindexPrev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_V20)) {
CCreditPool creditPool = m_cpoolman.GetCreditPool(pindexPrev, chainparams.GetConsensus());
creditPoolDiff.emplace(std::move(creditPool), pindexPrev, chainparams.GetConsensus(), 0);
}
// This map with signals is used only to find duplicates
std::unordered_map<uint8_t, int> signals = m_mnhfman.GetSignalsStage(pindexPrev);
// mapModifiedTx will store sorted packages after they are modified
// because some of their txs are already in the block
indexed_modified_transaction_set mapModifiedTx;
// Keep track of entries that failed inclusion, to avoid duplicate work
CTxMemPool::setEntries failedTx;
CTxMemPool::indexed_transaction_set::index<ancestor_score>::type::iterator mi = m_mempool.mapTx.get<ancestor_score>().begin();
CTxMemPool::txiter iter;
// Limit the number of attempts to add transactions to the block when it is
// close to full; this is just a simple heuristic to finish quickly if the
// mempool has a lot of entries.
const int64_t MAX_CONSECUTIVE_FAILURES = 1000;
int64_t nConsecutiveFailed = 0;
while (mi != m_mempool.mapTx.get<ancestor_score>().end() || !mapModifiedTx.empty()) {
// First try to find a new transaction in mapTx to evaluate.
if (mi != m_mempool.mapTx.get<ancestor_score>().end() &&
SkipMapTxEntry(m_mempool.mapTx.project<0>(mi), mapModifiedTx, failedTx)) {
++mi;
continue;
}
// Now that mi is not stale, determine which transaction to evaluate:
// the next entry from mapTx, or the best from mapModifiedTx?
bool fUsingModified = false;
modtxscoreiter modit = mapModifiedTx.get<ancestor_score>().begin();
if (mi == m_mempool.mapTx.get<ancestor_score>().end()) {
// We're out of entries in mapTx; use the entry from mapModifiedTx
iter = modit->iter;
fUsingModified = true;
} else {
// Try to compare the mapTx entry to the mapModifiedTx entry
iter = m_mempool.mapTx.project<0>(mi);
if (modit != mapModifiedTx.get<ancestor_score>().end() &&
CompareTxMemPoolEntryByAncestorFee()(*modit, CTxMemPoolModifiedEntry(iter))) {
// The best entry in mapModifiedTx has higher score
// than the one from mapTx.
// Switch which transaction (package) to consider
iter = modit->iter;
fUsingModified = true;
} else {
// Either no entry in mapModifiedTx, or it's worse than mapTx.
// Increment mi for the next loop iteration.
++mi;
}
}
if (creditPoolDiff != std::nullopt) {
// If one transaction is skipped due to limits, it is not a reason to interrupt
// whole process of adding transactions.
// `state` is local here because used only to log info about this specific tx
TxValidationState state;
if (!creditPoolDiff->ProcessLockUnlockTransaction(m_qman, iter->GetTx(), state)) {
if (fUsingModified) {
mapModifiedTx.get<ancestor_score>().erase(modit);
failedTx.insert(iter);
}
LogPrintf("%s: asset-locks tx %s skipped due %s\n",
__func__, iter->GetTx().GetHash().ToString(), state.ToString());
continue;
}
}
if (std::optional<uint8_t> signal = extractEHFSignal(iter->GetTx()); signal != std::nullopt) {
if (signals.find(*signal) != signals.end()) {
if (fUsingModified) {
mapModifiedTx.get<ancestor_score>().erase(modit);
failedTx.insert(iter);
}
LogPrintf("%s: ehf signal tx %s skipped due to duplicate %d\n",
__func__, iter->GetTx().GetHash().ToString(), *signal);
continue;
}
signals.insert({*signal, 0});
}
// We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't
// contain anything that is inBlock.
assert(!inBlock.count(iter));
uint64_t packageSize = iter->GetSizeWithAncestors();
CAmount packageFees = iter->GetModFeesWithAncestors();
unsigned int packageSigOps = iter->GetSigOpCountWithAncestors();
if (fUsingModified) {
packageSize = modit->nSizeWithAncestors;
packageFees = modit->nModFeesWithAncestors;
packageSigOps = modit->nSigOpCountWithAncestors;
}
if (packageFees < blockMinFeeRate.GetFee(packageSize)) {
// Everything else we might consider has a lower fee rate
return;
}
if (!TestPackage(packageSize, packageSigOps)) {
if (fUsingModified) {
// Since we always look at the best entry in mapModifiedTx,
// we must erase failed entries so that we can consider the
// next best entry on the next loop iteration
mapModifiedTx.get<ancestor_score>().erase(modit);
failedTx.insert(iter);
}
++nConsecutiveFailed;
if (nConsecutiveFailed > MAX_CONSECUTIVE_FAILURES && nBlockSize > nBlockMaxSize - 1000) {
// Give up if we're close to full and haven't succeeded in a while
break;
}
continue;
}
CTxMemPool::setEntries ancestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
m_mempool.CalculateMemPoolAncestors(*iter, ancestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);
onlyUnconfirmed(ancestors);
ancestors.insert(iter);
// Test if all tx's are Final and safe
if (!TestPackageTransactions(ancestors)) {
if (fUsingModified) {
mapModifiedTx.get<ancestor_score>().erase(modit);
failedTx.insert(iter);
}
continue;
}
// This transaction will make it in; reset the failed counter.
nConsecutiveFailed = 0;
// Package can be added. Sort the entries in a valid order.
std::vector<CTxMemPool::txiter> sortedEntries;
SortForBlock(ancestors, sortedEntries);
for (size_t i=0; i<sortedEntries.size(); ++i) {
AddToBlock(sortedEntries[i]);
// Erase from the modified set, if present
mapModifiedTx.erase(sortedEntries[i]);
}
++nPackagesSelected;
// Update transactions that depend on each of these
nDescendantsUpdated += UpdatePackagesForAdded(ancestors, mapModifiedTx);
}
}
void IncrementExtraNonce(CBlock* pblock, const CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
// Update nExtraNonce
static uint256 hashPrevBlock;
if (hashPrevBlock != pblock->hashPrevBlock)
{
nExtraNonce = 0;
hashPrevBlock = pblock->hashPrevBlock;
}
++nExtraNonce;
unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
CMutableTransaction txCoinbase(*pblock->vtx[0]);
txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce));
assert(txCoinbase.vin[0].scriptSig.size() <= 100);
pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase));
pblock->hashMerkleRoot = BlockMerkleRoot(*pblock);
}