mirror of
https://github.com/dashpay/dash.git
synced 2024-12-26 20:42:59 +01:00
4a3e3af6e7
fa0074e2d82928016a43ca408717154a1c70a4db scripted-diff: Bump copyright headers (MarcoFalke) Pull request description: Needs to be done because no one has removed the years yet ACKs for top commit: practicalswift: ACK fa0074e2d82928016a43ca408717154a1c70a4db Tree-SHA512: 210e92acd7d400b556cf8259c3ec9967797420cfd19f0c2a4fa54cb2b3d32ad9ae27e771269201e7d554c0f4cd73a8b1c1a42c9f65d8685ca4d52e5134b071a3
180 lines
6.3 KiB
C++
180 lines
6.3 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2020 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
// NOTE: This file is intended to be customised by the end user, and includes only local node policy logic
|
|
|
|
#include <policy/policy.h>
|
|
|
|
#include <coins.h>
|
|
#include <policy/settings.h>
|
|
|
|
|
|
CAmount GetDustThreshold(const CTxOut& txout, const CFeeRate& dustRelayFeeIn)
|
|
{
|
|
// "Dust" is defined in terms of dustRelayFee,
|
|
// which has units satoshis-per-kilobyte.
|
|
// If you'd pay more in fees than the value of the output
|
|
// to spend something, then we consider it dust.
|
|
// A typical spendable txout is 34 bytes big, and will
|
|
// need a CTxIn of at least 148 bytes to spend:
|
|
// so dust is a spendable txout less than
|
|
// 182*dustRelayFee/1000 (in satoshis).
|
|
// 546 satoshis at the default rate of 3000 sat/kB.
|
|
if (txout.scriptPubKey.IsUnspendable())
|
|
return 0;
|
|
|
|
size_t nSize = GetSerializeSize(txout)+148u;
|
|
return dustRelayFeeIn.GetFee(nSize);
|
|
}
|
|
|
|
bool IsDust(const CTxOut& txout, const CFeeRate& dustRelayFeeIn)
|
|
{
|
|
return (txout.nValue < GetDustThreshold(txout, dustRelayFeeIn));
|
|
}
|
|
|
|
bool IsStandard(const CScript& scriptPubKey, TxoutType& whichType)
|
|
{
|
|
std::vector<std::vector<unsigned char> > vSolutions;
|
|
whichType = Solver(scriptPubKey, vSolutions);
|
|
|
|
if (whichType == TxoutType::NONSTANDARD) {
|
|
return false;
|
|
} else if (whichType == TxoutType::MULTISIG) {
|
|
unsigned char m = vSolutions.front()[0];
|
|
unsigned char n = vSolutions.back()[0];
|
|
// Support up to x-of-3 multisig txns as standard
|
|
if (n < 1 || n > 3)
|
|
return false;
|
|
if (m < 1 || m > n)
|
|
return false;
|
|
} else if (whichType == TxoutType::NULL_DATA &&
|
|
(!fAcceptDatacarrier || scriptPubKey.size() > nMaxDatacarrierBytes)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IsStandardTx(const CTransaction& tx, bool permit_bare_multisig, const CFeeRate& dust_relay_fee, std::string& reason)
|
|
{
|
|
if (tx.nVersion > TX_MAX_STANDARD_VERSION || tx.nVersion < 1) {
|
|
reason = "version";
|
|
return false;
|
|
}
|
|
|
|
// Extremely large transactions with lots of inputs can cost the network
|
|
// almost as much to process as they cost the sender in fees, because
|
|
// computing signature hashes is O(ninputs*txsize). Limiting transactions
|
|
// to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.
|
|
unsigned int sz = GetSerializeSize(tx, CTransaction::CURRENT_VERSION);
|
|
if (sz >= MAX_STANDARD_TX_SIZE) {
|
|
reason = "tx-size";
|
|
return false;
|
|
}
|
|
|
|
for (const CTxIn& txin : tx.vin)
|
|
{
|
|
// Biggest 'standard' txin involving only keys is a 15-of-15 P2SH
|
|
// multisig with compressed keys (remember the 520 byte limit on
|
|
// redeemScript size). That works out to a (15*(33+1))+3=513 byte
|
|
// redeemScript, 513+1+15*(73+1)+3=1627 bytes of scriptSig, which
|
|
// we round off to 1650(MAX_STANDARD_SCRIPTSIG_SIZE) bytes for
|
|
// some minor future-proofing. That's also enough to spend a
|
|
// 20-of-20 CHECKMULTISIG scriptPubKey, though such a scriptPubKey
|
|
// is not considered standard.
|
|
if (txin.scriptSig.size() > MAX_STANDARD_SCRIPTSIG_SIZE) {
|
|
reason = "scriptsig-size";
|
|
return false;
|
|
}
|
|
if (!txin.scriptSig.IsPushOnly()) {
|
|
reason = "scriptsig-not-pushonly";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned int nDataOut = 0;
|
|
TxoutType whichType;
|
|
for (const CTxOut& txout : tx.vout) {
|
|
if (!::IsStandard(txout.scriptPubKey, whichType)) {
|
|
reason = "scriptpubkey";
|
|
return false;
|
|
}
|
|
|
|
if (whichType == TxoutType::NULL_DATA)
|
|
nDataOut++;
|
|
else if ((whichType == TxoutType::MULTISIG) && (!permit_bare_multisig)) {
|
|
reason = "bare-multisig";
|
|
return false;
|
|
} else if (IsDust(txout, dust_relay_fee)) {
|
|
reason = "dust";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// only one OP_RETURN txout is permitted
|
|
if (nDataOut > 1) {
|
|
reason = "multi-op-return";
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Check transaction inputs to mitigate two
|
|
* potential denial-of-service attacks:
|
|
*
|
|
* 1. scriptSigs with extra data stuffed into them,
|
|
* not consumed by scriptPubKey (or P2SH script)
|
|
* 2. P2SH scripts with a crazy number of expensive
|
|
* CHECKSIG/CHECKMULTISIG operations
|
|
*
|
|
* Why bother? To avoid denial-of-service attacks; an attacker
|
|
* can submit a standard HASH... OP_EQUAL transaction,
|
|
* which will get accepted into blocks. The redemption
|
|
* script can be anything; an attacker could use a very
|
|
* expensive-to-check-upon-redemption script like:
|
|
* DUP CHECKSIG DROP ... repeated 100 times... OP_1
|
|
*/
|
|
bool AreInputsStandard(const CTransaction& tx, const CCoinsViewCache& mapInputs)
|
|
{
|
|
if (tx.IsCoinBase())
|
|
return true; // Coinbases don't use vin normally
|
|
|
|
for (unsigned int i = 0; i < tx.vin.size(); i++)
|
|
{
|
|
const CTxOut& prev = mapInputs.AccessCoin(tx.vin[i].prevout).out;
|
|
|
|
std::vector<std::vector<unsigned char> > vSolutions;
|
|
TxoutType whichType = Solver(prev.scriptPubKey, vSolutions);
|
|
if (whichType == TxoutType::NONSTANDARD) {
|
|
return false;
|
|
} else if (whichType == TxoutType::SCRIPTHASH) {
|
|
std::vector<std::vector<unsigned char> > stack;
|
|
// convert the scriptSig into a stack, so we can inspect the redeemScript
|
|
if (!EvalScript(stack, tx.vin[i].scriptSig, SCRIPT_VERIFY_NONE, BaseSignatureChecker(), SigVersion::BASE))
|
|
return false;
|
|
if (stack.empty())
|
|
return false;
|
|
CScript subscript(stack.back().begin(), stack.back().end());
|
|
if (subscript.GetSigOpCount(true) > MAX_P2SH_SIGOPS) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int64_t GetVirtualTransactionSize(int64_t nSize, int64_t nSigOp, unsigned int bytes_per_sigop)
|
|
{
|
|
return std::max(nSize, nSigOp * bytes_per_sigop);
|
|
}
|
|
|
|
int64_t GetVirtualTransactionSize(const CTransaction& tx, int64_t nSigOp, unsigned int bytes_per_sigop)
|
|
{
|
|
return GetVirtualTransactionSize(tx.GetTotalSize(), nSigOp, bytes_per_sigop);
|
|
}
|