dash/doc/descriptors.md
Wladimir J. van der Laan b8a87799f0 Merge #14096: Add reference documentation for descriptors language
2b5d6f8df24b381d35b75187c97ae0cc9f7c3ed0 Replace duplcate reference with reference to reference doc (Pieter Wuille)
89709db7a2710456011eac9dcd6a60d5e87b97ae Adjust TODO link (Pieter Wuille)
9254ffcf2d910ecb0f9ecbeef6d40a2008a44870 Add descriptor reference documentation (Pieter Wuille)

Pull request description:

Tree-SHA512: 1ca0d537f9bcbb23266e9a4a02a60013ef8309958fb701f638283887585b5ddea6bc9dab859454ec3a373b1a12a4fd69836e7030417bb2ca43fef26b104c0d65
2021-09-17 14:07:10 -04:00

5.4 KiB

Support for Output Descriptors in Dash Core

Since Dash Core v0.17, there is support for Output Descriptors in the scantxoutset RPC call. This is a simple language which can be used to describe collections of output scripts.

This document describes the language. For the specifics on usage for scanning the UTXO set, see the scantxoutset RPC help.

Features

Output descriptors currently support:

  • Pay-to-pubkey scripts (P2PK), through the pk function.
  • Pay-to-pubkey-hash scripts (P2PKH), through the pkh function.
  • Pay-to-script-hash scripts (P2SH), through the sh function.
  • Multisig scripts, through the multi function.
  • Any type of supported address through the addr function.
  • Raw hex scripts through the raw function.
  • Public keys (compressed and uncompressed) in hex notation, or BIP32 extended pubkeys with derivation paths.

Examples

  • pk(0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798) represents a P2PK output.
  • multi(1,022f8bde4d1a07209355b4a7250a5c5128e88b84bddc619ab7cba8d569b240efe4,025cbdf0646e5db4eaa398f365f2ea7a0e3d419b7e0330e39ce92bddedcac4f9bc) represents a bare 1-of-2 multisig.
  • pkh(xpub68Gmy5EdvgibQVfPdqkBBCHxA5htiqg55crXYuXoQRKfDBFA1WEjWgP6LHhwBZeNK1VTsfTFUHCdrfp1bgwQ9xv5ski8PX9rL2dZXvgGDnw/1'/2) refers to a single P2PKH output, using child key 1'/2 of the specified xpub.

Reference

Descriptors consist of several types of expressions. The top level expression is always a SCRIPT.

SCRIPT expressions:

  • pk(KEY) (anywhere): P2PK output for the given public key.
  • pkh(KEY) (anywhere): P2PKH output for the given public key (use addr if you only know the pubkey hash).
  • sh(SCRIPT) (top level only): P2SH embed the argument.
  • combo(KEY) (top level only): an alias for the collection of pk(KEY) and pkh(KEY).
  • multi(k,KEY_1,KEY_2,...,KEY_n) (anywhere): k-of-n multisig script.
  • addr(ADDR) (top level only): the script which ADDR expands to.
  • raw(HEX) (top level only): the script whose hex encoding is HEX.

KEY expressions:

  • Hex encoded public keys (66 characters starting with 02 or 03, or 130 characters starting with 04).
  • WIF encoded private keys may be specified instead of the corresponding public key, with the same meaning. -xpub encoded extended public key or xprv encoded private key (as defined in BIP 32).
    • Followed by zero or more /NUM unhardened and /NUM' hardened BIP32 derivation steps.
    • Optionally followed by a single /* or /*' final step to denote all (direct) unhardened or hardened children.
    • The usage of hardened derivation steps requires providing the private key.
    • Instead of a ', the suffix h can be used to denote hardened derivation.

ADDR expressions are any type of supported address:

  • P2PKH addresses (base58, of the form X...). Note that P2PKH addresses in descriptors cannot be used for P2PK outputs (use the pk function instead).
  • P2SH addresses (base58, of the form 7..., defined in BIP 13).

Explanation

Single-key scripts

Many single-key constructions are used in practice, generally including P2PK and P2PKH. More combinations are imaginable, though they may not be optimal: P2SH-P2PK and P2SH-P2PKH.

To describe these, we model these as functions. The functions pk (P2PK) and pkh (P2PKH) take as input a public key in hexadecimal notation (which will be extended later), and return the corresponding scriptPubKey. The sh (P2SH) function takes as input a script, and returns the script describing P2SH outputs with the input as embedded script. The name of the function does not contain "p2" for brevity.

Multisig

Several pieces of software use multi-signature (multisig) scripts based on Bitcoin's OP_CHECKMULTISIG opcode. To support these, we introduce the multi(k,key_1,key_2,...,key_n) function. It represents a k-of-n multisig policy, where any k out of the n provided public keys must sign.

BIP32 derived keys and chains

Most modern wallet software and hardware uses keys that are derived using BIP32 ("HD keys"). We support these directly by permitting strings consisting of an extended public key (commonly referred to as an xpub) plus derivation path anywhere a public key is expected. The derivation path consists of a sequence of 0 or more integers (in the range 0..231-1) each optionally followed by ' or h, and separated by / characters. The string may optionally end with the literal /* or /*' (or /*h) to refer to all unhardened or hardened child keys instead.

Whenever a public key is described using a hardened derivation step, the script cannot be computed without access to the corresponding private key.

Including private keys

Often it is useful to communicate a description of scripts along with the necessary private keys. For this reason, anywhere a public key or xpub is supported, a private key in WIF format or xprv may be provided instead. This is useful when private keys are necessary for hardened derivation steps, or for dumping wallet descriptors including private key material.

Compatibility with old wallets

In order to easily represent the sets of scripts currently supported by existing Dash Core wallets, a convenience function combo is provided, which takes as input a public key, and constructs the P2PK and P2PKH scripts for that key.