dash/test/functional/README.md
Konstantin Akimov f34889dcf4
Merge #19760: test: Remove confusing mininode terminology
d5800da5199527a366024bc80cad7fcca17d5c4a [test] Remove final references to mininode (John Newbery)
5e8df3312e47a73e747ee892face55ed9ababeea test: resort imports (John Newbery)
85165d4332b0f72d30e0c584b476249b542338e6 scripted-diff: Rename mininode to p2p (John Newbery)
9e2897d020b114a10c860f90c5405be029afddba scripted-diff: Rename mininode_lock to p2p_lock (John Newbery)

Pull request description:

  New contributors are often confused by the terminology in the test framework, and what the difference between a _node_ and a _peer_ is. To summarize:

  - a 'node' is a bitcoind instance. This is the thing whose behavior is being tested. Each bitcoind node is managed by a python `TestNode` object which is used to start/stop the node, manage the node's data directory, read state about the node (eg process status, log file), and interact with the node over different interfaces.
  - one of the interfaces that we can use to interact with the node is the p2p interface. Each connection to a node using this interface is managed by a python `P2PInterface` or derived object (which is owned by the `TestNode` object). We can open zero, one or many p2p connections to each bitcoind node. The node sees these connections as 'peers'.

  For historic reasons, the word 'mininode' has been used to refer to those p2p interface objects that we use to connect to the bitcoind node (the code was originally taken from the 'mini-node' branch of https://github.com/jgarzik/pynode/tree/mini-node). However that name has proved to be confusing for new contributors, so rename the remaining references.

ACKs for top commit:
  amitiuttarwar:
    ACK d5800da519
  MarcoFalke:
    ACK d5800da5199527a366024bc80cad7fcca17d5c4a 🚞
Tree-SHA512: 2c46c2ac3c4278b6e3c647cfd8108428a41e80788fc4f0e386e5b0c47675bc687d94779496c09a3e5ea1319617295be10c422adeeff2d2bd68378e00e0eeb5de
2024-01-20 00:07:10 +07:00

8.4 KiB

Functional tests

Writing Functional Tests

Example test

The file test/functional/example_test.py is a heavily commented example of a test case that uses both the RPC and P2P interfaces. If you are writing your first test, copy that file and modify to fit your needs.

Coverage

Running test/functional/test_runner.py with the --coverage argument tracks which RPCs are called by the tests and prints a report of uncovered RPCs in the summary. This can be used (along with the --extended argument) to find out which RPCs we don't have test cases for.

Style guidelines

  • Where possible, try to adhere to PEP-8 guidelines
  • Use a python linter like flake8 before submitting PRs to catch common style nits (eg trailing whitespace, unused imports, etc)
  • The oldest supported Python version is specified in doc/dependencies.md. Consider using pyenv, which checks .python-version, to prevent accidentally introducing modern syntax from an unsupported Python version. The Travis linter also checks this, but possibly not in all cases.
  • See the python lint script that checks for violations that could lead to bugs and issues in the test code.
  • Use type hints in your code to improve code readability and to detect possible bugs earlier.
  • Avoid wildcard imports
  • Use a module-level docstring to describe what the test is testing, and how it is testing it.
  • When subclassing the BitcoinTestFramework, place overrides for the set_test_params(), add_options() and setup_xxxx() methods at the top of the subclass, then locally-defined helper methods, then the run_test() method.
  • Use f'{x}' for string formatting in preference to '{}'.format(x) or '%s' % x.

Naming guidelines

  • Name the test <area>_test.py, where area can be one of the following:
    • feature for tests for full features that aren't wallet/mining/mempool, eg feature_rbf.py
    • interface for tests for other interfaces (REST, ZMQ, etc), eg interface_rest.py
    • mempool for tests for mempool behaviour, eg mempool_reorg.py
    • mining for tests for mining features, eg mining_prioritisetransaction.py
    • p2p for tests that explicitly test the p2p interface, eg p2p_disconnect_ban.py
    • rpc for tests for individual RPC methods or features, eg rpc_listtransactions.py
    • tool for tests for tools, eg tool_wallet.py
    • wallet for tests for wallet features, eg wallet_keypool.py
  • Use an underscore to separate words
    • exception: for tests for specific RPCs or command line options which don't include underscores, name the test after the exact RPC or argument name, eg rpc_decodescript.py, not rpc_decode_script.py
  • Don't use the redundant word test in the name, eg interface_zmq.py, not interface_zmq_test.py

General test-writing advice

  • Instead of inline comments or no test documentation at all, log the comments to the test log, e.g. self.log.info('Create enough transactions to fill a block'). Logs make the test code easier to read and the test logic easier to debug.
  • Set self.num_nodes to the minimum number of nodes necessary for the test. Having additional unrequired nodes adds to the execution time of the test as well as memory/CPU/disk requirements (which is important when running tests in parallel).
  • Avoid stop-starting the nodes multiple times during the test if possible. A stop-start takes several seconds, so doing it several times blows up the runtime of the test.
  • Set the self.setup_clean_chain variable in set_test_params() to True to initialize an empty blockchain and start from the Genesis block, rather than load a premined blockchain from cache with the default value of False. The cached data directories contain a 200-block pre-mined blockchain with the spendable mining rewards being split between four nodes. Each node has 25 mature block subsidies (25x500=12500 DASH) in its wallet. Using them is much more efficient than mining blocks in your test.
  • When calling RPCs with lots of arguments, consider using named keyword arguments instead of positional arguments to make the intent of the call clear to readers.
  • Many of the core test framework classes such as CBlock and CTransaction don't allow new attributes to be added to their objects at runtime like typical Python objects allow. This helps prevent unpredictable side effects from typographical errors or usage of the objects outside of their intended purpose.

RPC and P2P definitions

Test writers may find it helpful to refer to the definitions for the RPC and P2P messages. These can be found in the following source files:

  • /src/rpc/* for RPCs
  • /src/wallet/rpc* for wallet RPCs
  • ProcessMessage() in /src/net_processing.cpp for parsing P2P messages

Using the P2P interface

  • messages.py contains all the definitions for objects that pass over the network (CBlock, CTransaction, etc, along with the network-level wrappers for them, msg_block, msg_tx, etc).

  • P2P tests have two threads. One thread handles all network communication with the dashd(s) being tested in a callback-based event loop; the other implements the test logic.

  • P2PConnection is the class used to connect to a dashd. P2PInterface contains the higher level logic for processing P2P payloads and connecting to the Bitcoin Core node application logic. For custom behaviour, subclass the P2PInterface object and override the callback methods.

  • Can be used to write tests where specific P2P protocol behavior is tested. Examples tests are p2p_unrequested_blocks.py, p2p_compactblocks.py.

Prototyping tests

The TestShell class exposes the BitcoinTestFramework functionality to interactive Python3 environments and can be used to prototype tests. This may be especially useful in a REPL environment with session logging utilities, such as IPython. The logs of such interactive sessions can later be adapted into permanent test cases.

Test framework modules

The following are useful modules for test developers. They are located in test/functional/test_framework/.

authproxy.py

Taken from the python-bitcoinrpc repository.

test_framework.py

Base class for functional tests.

util.py

Generally useful functions.

p2p.py

Test objects for interacting with a dashd node over the p2p interface.

script.py

Utilities for manipulating transaction scripts (originally from python-bitcoinlib)

key.py

Test-only secp256k1 elliptic curve implementation

blocktools.py

Helper functions for creating blocks and transactions.

Benchmarking with perf

An easy way to profile node performance during functional tests is provided for Linux platforms using perf.

Perf will sample the running node and will generate profile data in the node's datadir. The profile data can then be presented using perf report or a graphical tool like hotspot.

There are two ways of invoking perf: one is to use the --perf flag when running tests, which will profile each node during the entire test run: perf begins to profile when the node starts and ends when it shuts down. The other way is the use the profile_with_perf context manager, e.g.

with node.profile_with_perf("send-big-msgs"):
    # Perform activity on the node you're interested in profiling, e.g.:
    for _ in range(10000):
        node.p2p.send_message(some_large_message)

To see useful textual output, run

perf report -i /path/to/datadir/send-big-msgs.perf.data.xxxx --stdio | c++filt | less

See also: